Source code for Corrfunc.theory.vpf

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Python wrapper around the C extension for the counts-in-cells
for 3-D real space. Corresponding C codes are in ``theory/vpf``
while the python wrapper is in :py:mod:`Corrfunc.theory.vpf`.
"""

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__author__ = ('Manodeep Sinha')
__all__ = ('vpf', )


[docs]def vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, verbose=False, periodic=True, boxsize=None, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, c_api_timer=False, isa=r'fastest'): """ Function to compute the counts-in-cells on 3-D real-space points. Returns a numpy structured array containing the probability of a sphere of radius up to ``rmax`` containing [0, numpN-1] galaxies. Parameters ----------- rmax: double Maximum radius of the sphere to place on the particles nbins: integer Number of bins in the counts-in-cells. Radius of first shell is rmax/nbins nspheres: integer (>= 0) Number of random spheres to place within the particle distribution. For a small number of spheres, the error is larger in the measured pN's. numpN: integer (>= 1) Governs how many unique pN's are to returned. If ``numpN`` is set to 1, then only the vpf (p0) is returned. For ``numpN=2``, p0 and p1 are returned. More explicitly, the columns in the results look like the following: ====== ========================== numpN Columns in output ====== ========================== 1 p0 2 p0 p1 3 p0 p1 p2 4 p0 p1 p2 p3 ====== ========================== and so on... Note: ``p0`` is the vpf seed: unsigned integer Random number seed for the underlying GSL random number generator. Used to draw centers of the spheres. X/Y/Z: arraytype, real (float/double) Particle positions in the 3 axes. Must be within [0, boxsize] and specified in the same units as ``rp_bins`` and boxsize. All 3 arrays must be of the same floating-point type. Calculations will be done in the same precision as these arrays, i.e., calculations will be in floating point if XYZ are single precision arrays (C float type); or in double-precision if XYZ are double precision arrays (C double type). verbose: boolean (default false) Boolean flag to control output of informational messages periodic: boolean Boolean flag to indicate periodic boundary conditions. boxsize: double, required if ``periodic=True`` The side-length of the cube in the cosmological simulation. Present to facilitate exact calculations for periodic wrapping. If boxsize is 0., then the wrapping is done based on the maximum difference within each dimension of the X/Y/Z arrays. .. versionchanged:: 2.4.0 Required if ``periodic=True``. (xyz)bin_refine_factor: integer, default is (1,1,1); typically within [1-3] Controls the refinement on the cell sizes. Can have up to a 20% impact on runtime. Note: Since the counts in spheres calculation is symmetric in all 3 dimensions, the defaults are different from the clustering routines. max_cells_per_dim: integer, default is 100, typical values in [50-300] Controls the maximum number of cells per dimension. Total number of cells can be up to (max_cells_per_dim)^3. Only increase if ``rmax`` is too small relative to the boxsize (and increasing helps the runtime). copy_particles: boolean (default True) Boolean flag to make a copy of the particle positions If set to False, the particles will be re-ordered in-place .. versionadded:: 2.3.0 c_api_timer: boolean (default false) Boolean flag to measure actual time spent in the C libraries. Here to allow for benchmarking and scaling studies. isa: string (default ``fastest``) Controls the runtime dispatch for the instruction set to use. Options are: [``fastest``, ``avx512f``, ``avx``, ``sse42``, ``fallback``] Setting isa to ``fastest`` will pick the fastest available instruction set on the current computer. However, if you set ``isa`` to, say, ``avx`` and ``avx`` is not available on the computer, then the code will revert to using ``fallback`` (even though ``sse42`` might be available). Unless you are benchmarking the different instruction sets, you should always leave ``isa`` to the default value. And if you *are* benchmarking, then the string supplied here gets translated into an ``enum`` for the instruction set defined in ``utils/defs.h``. Returns -------- results: Numpy structured array A numpy structured array containing [rmax, pN[numpN]] with ``nbins`` elements. Each row contains the maximum radius of the sphere and the ``numpN`` elements in the ``pN`` array. Each element of this array contains the probability that a sphere of radius ``rmax`` contains *exactly* ``N`` galaxies. For example, pN[0] (p0, the void probibility function) is the probability that a sphere of radius ``rmax`` contains zero galaxies. if ``c_api_timer`` is set, then the return value is a tuple containing (results, api_time). ``api_time`` measures only the time spent within the C library and ignores all python overhead. Example -------- >>> from __future__ import print_function >>> import numpy as np >>> from Corrfunc.theory.vpf import vpf >>> rmax = 10.0 >>> nbins = 10 >>> nspheres = 10000 >>> numpN = 5 >>> seed = -1 >>> N = 100000 >>> boxsize = 420.0 >>> seed = 42 >>> np.random.seed(seed) >>> X = np.random.uniform(0, boxsize, N) >>> Y = np.random.uniform(0, boxsize, N) >>> Z = np.random.uniform(0, boxsize, N) >>> results = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, ... boxsize=boxsize, periodic=True) >>> for r in results: ... print("{0:10.1f} ".format(r[0]), end="") ... # doctest: +NORMALIZE_WHITESPACE ... for pn in r[1]: ... print("{0:10.3f} ".format(pn), end="") ... # doctest: +NORMALIZE_WHITESPACE ... print("") # doctest: +NORMALIZE_WHITESPACE 1.0 0.995 0.005 0.000 0.000 0.000 2.0 0.955 0.044 0.001 0.000 0.000 3.0 0.858 0.129 0.012 0.001 0.000 4.0 0.696 0.252 0.047 0.005 0.001 5.0 0.493 0.347 0.127 0.028 0.005 6.0 0.295 0.363 0.219 0.091 0.026 7.0 0.141 0.285 0.265 0.178 0.085 8.0 0.056 0.159 0.227 0.229 0.161 9.0 0.019 0.066 0.135 0.191 0.193 10.0 0.003 0.019 0.054 0.105 0.150 """ try: from Corrfunc._countpairs import countspheres_vpf as vpf_extn except ImportError: msg = "Could not import the C extension for the Counts-in-Cells "\ " (vpf)" raise ImportError(msg) import numpy as np from future.utils import bytes_to_native_str from Corrfunc.utils import translate_isa_string_to_enum,\ convert_to_native_endian, sys_pipes from math import pi if numpN <= 0: msg = "Number of counts-in-cells wanted must be at least 1" raise ValueError(msg) if periodic and boxsize is None: raise ValueError("Must specify a boxsize if periodic=True") kwargs = {} if boxsize is not None: kwargs['boxsize'] = boxsize # Ensure all input arrays are native endian X, Y, Z = [convert_to_native_endian(arr, warn=True) for arr in [X, Y, Z]] integer_isa = translate_isa_string_to_enum(isa) with sys_pipes(): extn_results = vpf_extn(rmax, nbins, nspheres, numpN, seed, X, Y, Z, verbose=verbose, periodic=periodic, xbin_refine_factor=xbin_refine_factor, ybin_refine_factor=ybin_refine_factor, zbin_refine_factor=zbin_refine_factor, max_cells_per_dim=max_cells_per_dim, copy_particles=copy_particles, c_api_timer=c_api_timer, isa=integer_isa, **kwargs) if extn_results is None: msg = "RuntimeError occurred" raise RuntimeError(msg) else: extn_results, api_time = extn_results results_dtype = np.dtype([(bytes_to_native_str(b'rmax'), np.float64), (bytes_to_native_str(b'pN'), (np.float64, numpN))]) nbin = len(extn_results) results = np.zeros(nbin, dtype=results_dtype) for ii, r in enumerate(extn_results): results['rmax'][ii] = r[0] if numpN == 1: results['pN'] = r[1] else: for j in range(numpN): results['pN'][ii][j] = r[1 + j] if not c_api_timer: return results else: return results, api_time
if __name__ == '__main__': import doctest doctest.testmod()