

 [image: Corrfunc logo]

Corrfunc Documentation

Corrfunc is a set of high-performance routines to measure clustering statistics.
The main features of Corrfunc are:

	Fast All theory pair-counting is at least an order of magnitude faster than all existing public codes. Particularly suited for MCMC.

	OpenMP Parallel All pair-counting codes can be done in parallel (with strong scaling efficiency >~ 95% up to 10 cores)

	Python Extensions Python extensions allow you to do the compute-heavy bits using C while retaining all of the user-friendliness of python.

	Modular The code is written in a modular fashion and is easily extensible to compute arbitrary clustering statistics.

	Future-proof As I get access to newer instruction-sets, the codes will
get updated to use the latest and greatest CPU features.

The source code is publicly available at https://github.com/manodeep/Corrfunc.

Overview of Corrfunc

	Package Installation

	Getting started with Corrfunc

	Typical Tasks for Computing Correlation Functions

	Developer documentation

Reference

	Comprehensive API reference

License and Credits

	Package contributors

	License and Citation Information

Package Installation

To install Corrfunc, you can either use pip or clone the repo from GitHub and build the source code.
Either way, be sure to read the Dependencies section prior to installation.

Using pip

The simplest way to install the latest release of the code is with pip. Before installation, be sure you have installed the package dependencies described in the Dependencies section

python -m pip install Corrfunc

This will install the latest official release of the code.
If you want the latest master branch,
you will need to build the code from source following the instructions in the next section.

Building from source

If you don’t install the latest release using pip,
you can instead clone the cource code and call the setup file.
Before installation, be sure you have installed the package dependencies
described in the Dependencies section.
The first step is to clone the Corrfunc repository

git clone https://github.com/manodeep/Corrfunc.git
cd Corrfunc
make install
python -m pip install . (--user)

Dependencies

The command-line version of Corrfunc needs the following packages to be installed:

	make [https://www.gnu.org/software/make/]: 3.80 or later

	C compiler [https://gcc.gnu.org/]: gcc >=4.6, clang, icc. Multi-threading
will be disabled if the compiler does not support OpenMP.

	gsl [https://www.gnu.org/software/gsl/]: any recent version

If you plan to use the C extensions, then the following are required:

	Python [http://www.python.org/]: 2.7 or later

	Numpy [http://www.numpy.org/]: 1.7 or later

Any of the above can be installed with either pip or conda.

Verifying your installation

After installing Corrfunc, you should run the integrated test suite to make
sure that the package was installed correctly. If you installed from source,
then run the following sequence from the repository root directory:

make tests # run the C tests
python -m pip install pytest
python -m pytest # run the Python tests

If you installed using pip/conda, then use the following to run the tests
from your shell:

python -m pytest --pyargs Corrfunc

Once you have installed the package, see Getting started with Corrfunc for instructions on how to get up and running.

Getting started with Corrfunc

Corrfunc is a set of high-performance routines to measure clustering
statistics. The codes are divided conceptually into two different segments:

	theory - calculates clustering statistics on simulation volumes. Input
positions are expected to be Cartesian X/Y/Z. Periodic boundary conditions
are supported. Relevant C codes are in directory theory/

	mocks - calculates clustering statistics on observation volumes. Input
positions are assumed to be in obverser frame, Right Ascension, Declination
and SpeedofLight*Redshift (where required; \(\omega(\theta)\)
only needs RA and DEC). Relevant C codes are in directory mocks/

This getting-started guide assumes you have already followed the
Package Installation section of the documentation to get the package
and its dependencies set up on your machine.

If you want to compute correlation functions and have installed the python
extensions, then see Typical Tasks for Computing Correlation Functions for typical
tasks. Otherwise, read on for the various interfaces available within Corrfunc.

Computing Clustering Statistics with Corrfunc

Corrfunc supports three separate mechanisms to compute the clustering statistics:

	Via python (if you have python and numpy installed)

Pros: Fully flexible API to modulate code behaviour at runtime. For instance,
calculations can be performed in double-precision simply by passing arrays of
doubles (rather than floats).

Cons: Has fixed python overhead. For low particle numbers, can be as much as
20% slower compared to the command-line executables.

See Using the python extensions in Corrfunc for details on how to use the python interface.

	Via static libraries directly in C codes

Pros: Fully flexible API to modulate code behaviour at runtime. All features supported by the python extensions are also supported here.

Cons: Requires coding in C. See example C codes invoking the theory and
mocks in the directories: theory/examples/run_correlations.c and mocks/examples/run_correlations_mocks.c.

See Using the static library interface in Corrfunc for details on how to use the static library interface.

	Command-line executables

Pros: Fastest possible implementations of all clustering statistics

Cons: API is fixed. Any changes require full re-compilation.

See Using the command-line interface in Corrfunc for details on how to use the command-line executables.

Available Corrfunc interfaces

	Using the python extensions in Corrfunc

	Using the static library interface in Corrfunc

	Using the command-line interface in Corrfunc

	Cheat-sheet for all available interfaces in Corrfunc

Using the python extensions in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. Rest of document also assumes that you have installed
the C extensions for python.

Importing Corrfunc

After installing Corrfunc you can open up a python terminal and import the
base package by:

>>> import Corrfunc

All of the functionality is divided into theory routines and mocks
routines. These routines can be independently imported by using:

>>> from Corrfunc.theory import *
>>> from Corrfunc.mocks import *

You can access the full API documentation by simply typing:

help(DD) # theory pair-counter in 3-D separation (r)
help(DDrppi_mocks) # mocks pair-counter in 2-D (rp, pi)

First steps with Corrfunc

Overview of Corrfunc inputs

Broadly speaking, Corrfunc requires these following inputs:

	(At least) 3 arrays specifying the positions for the particles

	For Corrfunc.theory routines, these positions are Cartesian XYZ in
co-moving Mpc/h units.

	For Corrfunc.mocks routines, these positions are Right Ascension,
Declination, and Speed of Light * Redshift or Co-moving
distance. The angles are expected in degrees, while the distance is
expected in co-moving Mpc/h.

See Reading Catalogs for Corrfunc for details on how to read in arrays from a file.

	A boolean flag specifying in an auto-correlation or cross-correlation is
being performed. In case of cross-correlations, another set of 3 arrays
must be passed as input. This second set of arrays typically represents
randoms for Corrfunc.mocks.

	A file containing the bins for the clustering statistic (where
relevant). Look at theory/tests/bins for an example of the contents of
the file for spatial bins. See mocks/tests/angular_bins for an example
containing angular bins for mocks routines. Passing a filename is the most
general way of specifying bins in Corrfunc. However, you can also pass in a
1-D array for the bins.

See Specifying the separation bins in Corrfunc for details on how to specify the bins as a file as
well as an array

See Typical Tasks for Computing Correlation Functions for a broad overview of the typical tasks
associated with computing correlation functions. Read on for the various
pair-counters available within the python interfaces of Corrfunc.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. For all of these calculations a few inputs are required. The
following code section sets up the default inputs that are used later on in the
clustering functions:

>>> import numpy as np
>>> from Corrfunc.io import read_catalog

Read the default galaxies supplied with
Corrfunc. ~ 1 million galaxies on a 420 Mpc/h cube
>>> X, Y, Z = read_catalog()

Specify boxsize for the XYZ arrays
>>> boxsize = 420.0

Number of threads to use
>>> nthreads = 2

Create the bins array
>>> rmin = 0.1
>>> rmax = 20.0
>>> nbins = 20
>>> rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

Specify the distance to integrate along line of sight
>>> pimax = 40.0

Specify the max. of the cosine of the angle to the LOS for
DD(s, mu)
>>> mu_max = 1.0

Specify the number of linear bins in `mu`
>>> nmu_bins = 20

Specify that an autocorrelation is wanted
>>> autocorr = 1

Calculating 2-D projected auto-correlation (Corrfunc.theory.wp)

Corrfunc can directly compute the projected auto-correlation function,
\(w_p(r_p)\). This calculation sets periodic boundary conditions. Randoms
are calculated analytically based on the supplied boxsize. The projected
separation, \(r_p\) is calculated in the X-Y plane while the line-of-sight
separation, \(\pi\) is calculated in the Z plane. Only pairs with
\(\pi\) separation less than \(\pi_{max}\) are counted.

from Corrfunc.theory.wp import wp
results_wp = wp(boxsize, pimax, nthreads, rbins, X, Y, Z)

Calculating 3-D autocorrelation (Corrfunc.theory.xi)

Corrfunc can also compute the 3-D auto-correlation function,
\(\xi(r)\). Like \(w_p(r_p)\), this calculation also enforces periodic
boundary conditions and an auto-correlation. Randoms are calculated
analytically on the supplied boxsize.

from Corrfunc.theory.xi import xi
results_xi = xi(boxsize, nthreads, rbins, X, Y, Z)

Calculating 3-D pair-counts (Corrfunc.theory.DD)

Corrfunc can return the pair counts in 3-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DD import DD
results_DD = DD(autocorr, nthreads, rbins, X, Y, Z, boxsize=boxsize)

Calculating 2-D pair-counts (Corrfunc.theory.DDrppi)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The projected separation, \(r_p\) is calculated in the X-Y plane while the
line-of-sight separation, \(\pi\) is calculated in the Z plane.

The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DDrppi import DDrppi
results_DDrppi = DDrppi(autocorr, nthreads, pimax, rbins, X, Y, Z, boxsize=boxsize)

Calculating 2-D pair-counts (Corrfunc.theory.DDsmu)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The spatial separation, \(s\) is calculated in 3-D while
\(mu\) is the cosine of angle to the line-of-sight and is calculated
assuming that the Z-axis is the line-of-sight.

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
{\mu} &= \frac{\left(z_1 - z_2 \right)}{\Vert\mathbf{s}\Vert}\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\)

The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DDsmu import DDsmu
results_DDsmu = DDsmu(autocorr, nthreads, rbins, mu_max, nmu_bins, X, Y, Z, boxsize=boxsize)

Calculating the Counts-in-Cells (Corrfunc.theory.vpf)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for
counts-in-cells is the Void Probability Function – the probability that a
sphere of a certain size contains zero galaxies.

from Corrfunc.theory.vpf import vpf

Maximum radius of the sphere in Mpc/h
rmax = 10.0

Number of bins to cover up to rmax
nbins = 10

Number of random spheres to place
nspheres = 10000

Max number of galaxies in sphere (must be >=1)
numpN = 6

Random number seed (used for choosing sphere centres)
seed = 42

results_vpf = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, boxsize=boxsize)

Calculating clustering statistics in mock catalogs

In order to calculate clustering statistics in mock catalogs, the galaxy
positions are assumed to be specified as on-sky (Right Ascension,
Declination, and speed of light * redshift). The following code section
sets up the default arrays and parameters for the actual clustering calculations:

import numpy as np
import Corrfunc
from os.path import dirname, abspath, join as pjoin
from Corrfunc.io import read_catalog

Mock catalog (SDSS-North) supplied with Corrfunc
mock_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_mock_northonly.rdcz.ff")
RA, DEC, CZ = read_catalog(mock_catalog)

Randoms catalog (SDSS-North) supplied with Corrfunc
randoms_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_randoms_northonly.rdcz.ff")
RAND_RA, RAND_DEC, RAND_CZ = read_catalog(randoms_catalog)

Number of threads to use
nthreads = 2

Specify cosmology (1->LasDamas, 2->Planck)
cosmology = 1

Create the bins array
rmin = 0.1
rmax = 20.0
nbins = 20
rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

Specify the distance to integrate along line of sight
pimax = 40.0

Specify the max. of the cosine of the angle to the LOS
for DD(s, mu)
mu_max = 1.0

Specify the number of linear bins in `mu`
nmu_bins = 20

Specify that an autocorrelation is wanted
autocorr = 1

Calculating 2-D pair counts (Corrfunc.mocks.DDrppi_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then convert CZ into co-moving distance, and then pass the
converted array while setting the option is_comoving_dist=True. The
projected and line of sight separations are calculated using the following
equations from Zehavi et al. 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\pi &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\Vert\mathbf{l}\Vert, \\
r_p^2 &= \mathbf{s} \cdot \mathbf{s} - \pi^2\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\).

Here is the python code to call Corrfunc.mocks.DDrppi_mocks:

from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
results_DDrppi_mocks = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, rbins, RA, DEC, CZ)

Calculating 2-D pair counts (Corrfunc.mocks.DDsmu_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then convert CZ into co-moving distance, and then pass the
converted array while setting the option is_comoving_dist=True. The
projected and line of sight separations are calculated using the following
equations from Zehavi et al. 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\mu &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\left(\Vert\mathbf{l}\Vert \Vert\mathbf{s}\Vert \right)\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\)

Here is the python code to call Corrfunc.mocks.DDsmu_mocks:

from Corrfunc.mocks.DDsmu_mocks import DDsmu_mocks
results_DDsmu_mocks = DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins, rbins, RA, DEC, CZ)

Calculating angular pair-counts (Corrfunc.mocks.DDtheta_mocks)

Corrfunc can compute angular pair counts for mock catalogs. The input positions
are expected to be Right Ascension and Declination. Since all
calculations are in angular space, cosmology is not required.

from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
results_DDtheta_mocks = DDtheta_mocks(autocorr, nthreads, rbins, RA, DEC)

Calculating the Counts-in-Cells (Corrfunc.mocks.vpf_mocks)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for
counts-in-cells is the Void Probability Function – the probability that a
sphere of a certain size contains zero galaxies.

from Corrfunc.mocks.vpf_mocks import vpf_mocks

Maximum radius of the sphere in Mpc/h
rmax = 10.0

Number of bins to cover up to rmax
nbins = 10

Number of random spheres to place
nspheres = 10000

Max number of galaxies in sphere (must be >=1)
numpN = 6

Minimum number of random points needed in a ``rmax`` sphere
such that it is considered to be entirely within the mock
footprint. Does not matter in this case, since we already
have the centers for the fully enclosed spheres
threshold_ngb = 1

File with sphere centers (centers such that spheres with size
rmax=10 Mpc/h are completely inside the survey)
centers_file = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")

results_vpf_mocks = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_file, cosmology, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ)

See the complete reference here Corrfunc.

Using the static library interface in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. This guide also assumes some familiarity with C coding.

This concepts in this guide are implemented in the files
theory/examples/run_correlations.c and
mocks/examples/run_correlations_mocks.c for simulations and mock
catalogs respectively.

The basic principle of using the static libraries has the following steps:

	Include the appropriate header to get the correct function signature (at
compile time)

	In your code, include call with clustering function with appropriate parameters

	Compile your code with -I </path/to/Corrfunc/include> flags. If you have
installed Corrfunc via pip, then use
os.path.join(os.path.dirname(Corrfunc.__file__), ../include/) as the
include header.

	Link your code with the appropriate static library. Look in the
examples/Makefile for the linker flags.

	Run your code

Worked out example C code for clustering statistics in simulation boxes

Common setup code for the simulation C routines

In this code section, we will setup the arrays and the overall common inputs
required by the C static libraries.

#include "io.h"

const char file[] = {"theory/tests/data/gals_Mr19.ff"};
const char fileformat[] = {"f"};
const char binfile[] = {"theory/tests/bins"};
const double boxsize=420.0;
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;

double *x1=NULL, *y1=NULL, *z1=NULL, *x2=NULL, *y2=NULL, *z2=NULL;

const int64_t ND1 = read_positions(file,fileformat,sizeof(*x1),3, &x1, &y1, &z1);
x2 = x1;
y2 = y1;
z2 = z1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose = 1;
options.need_avg_sep = 1;
options.periodic = 1;
options.float_type = sizeof(*x1);

Calculating 2-D projected auto-correlation (theory/wp/libcountpairs_wp.a)

Corrfunc can directly compute the projected auto-correlation function,
\(w_p(r_p)\). This calculation sets periodic boundary conditions. Randoms
are calculated analytically based on the supplied boxsize. The projected
separation, \(r_p\) is calculated in the X-Y plane while the line-of-sight
separation, \(\pi\) is calculated in the Z plane. Only pairs with
\(\pi\) separation less than \(\pi_{max}\) are counted.

 #include "countpairs_wp.h"

 results_countpairs_wp results;
 int status = countpairs_wp(ND1,x1,y1,z1,
 boxsize,
 nthreads,
 binfile,
 pimax,
 &results,
 &options, NULL);

 if(status != EXIT_SUCCESS) {
 fprintf(stderr,"Runtime error occurred while using wp static library\n");
 return status;
 }

 double rlow=results.rupp[0];
 for(int i=1;i<results.nbin;++i) {
 fprintf(stdout,"%e\t%e\t%e\t%e\t%12"PRIu64" \n",
 results.wp[i],results.rpavg[i],rlow,results.rupp[i],results.npairs[i]);
 rlow=results.rupp[i];
}

This is the generic pattern for using all of the correlation function. Look in
theory/examples/run_correlations.c for details on how to use all of the available
static libraries.

Worked out example C code for clustering statistics in mock catalogs

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then you have two options:

	convert CZ into co-moving distance, and then pass the converted array while setting config_option.is_comoving_dist=1.

	Add another cosmology in utils/cosmology_params.c in the function
init_cosmology. Then, recompile the Corrfunc.mocks and pass
cosmology=integer_for_newcosmology into the relevant functions.

Common setup code for the mocks C routines

In this code section, we will setup the arrays and the overall common inputs
required by the C static libraries.

#include "io.h" //for read_positions function

const char file[] = {"mocks/tests/data/Mr19_mock_northonly.rdcz.dat"};
const char fileformat[] = {"a"}; // ascii format
const char binfile[] = {"mocks/tests/bins"};
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;
const int cosmology=1; // 1->LasDamas cosmology, 2->Planck

// This computes in double-precision. Change to float for computing in float
double *ra1=NULL, *dec1=NULL, *cz1=NULL, *ra2=NULL, *dec2=NULL, *cz2=NULL;

//Read-in the data
const int64_t ND1 = read_positions(file,fileformat,sizeof(*ra1),3, &ra1, &dec1, &cz1);

ra2 = ra1;
dec2 = dec1;
cz2 = cz1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose=1;
options.periodic=0;
options.need_avg_sep=1;
options.float_type = sizeof(*ra1);

Calculating 2-D pair counts (mocks/DDrppi_mocks/libcountpairs_rp_pi_mocks.a)

Here is a code snippet demonstrating how to calculate \(DD(r_p, \pi)\) for
mock catalogs. The projected separation, \(r_p\) and line of sight
separation, \(\pi\) are calculated using the following equations from Zehavi et
al 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]:

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\pi &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\Vert\mathbf{l}\Vert, \\
r_p^2 &= \mathbf{s} \cdot \mathbf{s} - \pi^2\end{split}\]

where, \(\mathbf{v_1}\) and \(\mathbf{v_2}\) are the vectors for the
two points under consideration. Here is the C code for calling DDrppi_mocks:

#include "countpairs_rp_pi_mocks.h"

results_countpairs_mocks results;
int status = countpairs_mocks(ND1,ra1,dec1,cz1,
 ND2,ra2,dec2,cz2,
 nthreads,
 autocorr,
 binfile,
 pimax,
 cosmology,
 &results,
 &options, NULL);

const double dpi = pimax/(double)results.npibin ;
const int npibin = results.npibin;
for(int i=1;i<results.nbin;i++) {
 const double logrp = LOG10(results.rupp[i]);
 for(int j=0;j<npibin;j++) {
 int index = i*(npibin+1) + j;
 fprintf(stdout,"%10"PRIu64" %20.8lf %20.8lf %20.8lf \n",results.npairs[index],results.rpavg[index],logrp,(j+1)*dpi);
 }
}

This is the generic pattern for using all of the correlation function. Look in
mocks/examples/run_correlations_mocks.c for details on how to use all of the available
static libraries.

Using the command-line interface in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. The easiest way to get help on the command-line is by calling
the executables without any input parameters. Here is the list of executables
associated with each type of clustering statistic:

	Clustering Statistic

	Full path to executable

	\(DD(r)\)

	theory/DD/DD

	\(DD(r_p,\pi)\)

	theory/DDrppi/DDrppi

	\(w_p(r_p)\)

	theory/wp/wp

	\(\xi(r)\)

	theory/xi/xi

	\(pN(n)\)

	theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated
command-line executables are:

	Clustering Statistic

	Full path to executable

	\(DD(r_p,\pi)\)

	mocks/DDrppi_mocks/DDrppi_mocks

	\(DD(\theta)\)

	mocks/DDtheta_mocks/DDtheta_mocks

	\(pN(n)\)

	mocks/vpf_mocks/vpf_mocks

Cheat-sheet for all available interfaces in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. There are three available interfaces in Corrfunc

	Using the python extensions in Corrfunc

	Using the static library interface in Corrfunc. The static libraries
have the form libcount<statistic>.a; the corresponding header file is named
count<statistic>.h.

	Using the command-line interface in Corrfunc

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. The easiest way to get help on the command-line is by calling
the executables without any input parameters. Here is the list of executables
associated with each type of clustering statistic:

	Clustering Statistic

	Python Interface

	Static library

	Command-line (executable name)

	\(\xi(r)\)

	Corrfunc.theory.DD

	theory/DD/libcountpairs.a

	theory/DD/DD

	\(\xi(r_p,\pi)\)

	Corrfunc.theory.DDrppi

	theory/DDrppi/libcountpairs_rp_pi.a

	theory/DDrppi/DDrppi

	\(\xi(s,\mu)\)

	Corrfunc.theory.DDsmu

	theory/DDsmu/libcountpairs_s_mu.a

	theory/DDsmu/DDsmu

	\(w_p(r_p)\)

	Corrfunc.theory.wp

	theory/wp/libcountpairs_wp.a

	theory/wp/wp

	\(\xi(r)\)

	Corrfunc.theory.xi

	theory/xi/libcountpairs_xi.a

	theory/xi/xi

	\(pN(n)\)

	Corrfunc.theory.vpf

	theory/vpf/libcountspheres.a

	theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated
command-line executables are:

	Clustering Statistic

	Python Interface

	Static library

	Command-line (executable name)

	\(\xi(r_p,\pi)\)

	Corrfunc.mocks.DDrppi_mocks

	mocks/DDrppi_mocks/libcountpairs_rp_pi_mocks.a

	mocks/DDrppi_mocks/DDrppi_mocks

	\(\xi(s,\mu)\)

	Corrfunc.mocks.DDsmu_mocks

	mocks/DDsmu_mocks/libcountpairs_s_mu_mocks.a

	mocks/DDsmu_mocks/DDsmu_mocks

	\(\omega(\theta)\)

	Corrfunc.mocks.DDtheta_mocks

	mocks/DDtheta_mocks/libcountpairs_theta_mocks.a

	mocks/DDtheta_mocks/DDtheta_mocks

	\(pN(n)\)

	Corrfunc.mocks.vpf_mocks

	mocks/vpf_mocks/libcountspheres_mocks

	mocks/vpf_mocks/vpf_mocks

If you are not sure which correlation function to use, then please also see Which correlation function to use?.

Typical Tasks for Computing Correlation Functions

Here we present docstrings of the most commonly used functions and classes
grouped together by functionality.
Many docstrings contain example code to demonstrate basic usage.
For documentation of functions not listed here, see Corrfunc.

Reading input data

	Reading Catalogs for Corrfunc

Creating a file with bins for the clustering statistics

	Specifying the separation bins in Corrfunc

Choosing the correlation function

	Which correlation function to use?

Calculating Correlation Functions on Simulations

	Converting 3D pair counts into a correlation function

	Converting \((r_p, \pi)\) pairs into a projected correlation function

	Directly Computing \(\xi(r)\) and \(wp(rp)\)

	Detailed API for Clustering Statistics on Simulations

	Notes on the Random-Random Term in Autocorrelations

Calculating Correlation Functions on Mock Catalogs

	Calculating the projected correlation function, \(wp(rp)\)

	Calculating the angular correlation function, \(\omega(\theta)\)

	Detailed API for Clustering Statistics on Mock Catalogs

Weighted Correlation Functions

	Computing Weighted Correlation Functions

	Implementing Custom Weight Functions

Reading Catalogs for Corrfunc

All of the Corrfunc routines require some sort of
position arrays, X/Y/Z, as input. These arrays are
expected to be 1-D arrays of type np.array. If
you already have have the required numpy arrays,
then you can just pass them straight to Corrfunc.
If you need to read the arrays in from disk, then read
on. For the command-line interface, the input files can only
be in ASCII or fast-food format (for description of fast-food
binaries, see Fast-food binary format).

	Fast-food binary format

Reading from ASCII files

This is the most straight forward way – you need an ASCII
file with columns X/Y/Z (white-space separated).

Using numpy.genfromtxt

import numpy as np
fname = "myfile_containing_xyz_columns.dat"

For double precision calculations
dtype = np.float64 ## change to np.float32 for single precision

X, Y, Z = np.genfromtxt(fname, dtype=dtype, unpack=True)

Note

Corrfunc.read_catalog uses this exact code-snippet to read in ASCII files in python.

 Fast-food binary format

Fast-food binary format

The fast-food format is a fortran binary format – all fields are surrounded
with 4 bytes padding. These value of these padding bytes
is the number of bytes of data contained in between the padding bytes. For
example, to write out 20 bytes of data in
a fast-food file format would require a total of 4+20+4=28 bytes. The first
and last 4 bytes of the file will contain the value 20 –
showing that 20 bytes of real data are contained in between the two paddings.

The fast-food file consists of a header:

int idat[5];
float fdat[9];
float znow;

For the purposes of these correlation function codes, the only useful quantity
is idat[1] which contains N – the number of particles
in the file. The rest can simply filled with 0.

After this header, the actual X/Y/Z values are stored. The first 4
bytes after the header contains 4*N for float precision or
8*N for double precision where N=idat[1], is the number
of particles in the file. After all of the X values there will
be another 4 bytes containing 4*N or 8*N.

Note

Even when the X/Y/Z arrays are written out in double-precision, the padding is still 4 bytes.
The blocks for Y/Z similarly follow after the X block.

 Specifying the separation bins in Corrfunc

Specifying the separation bins in Corrfunc

All of the python extensions for Corrfunc accept
either a filename or an array for specifying the
\(r_p\) or \(\theta\).

Manually creating a file with arbitrary bins

This manual method lets you specify generic bins
as long as the upper-edge of one bin is the
same as the lower-edge of the next (i.e., continuous bins). The
bins themselves can have arbitrary widths, and the
smallest bin can start from 0.0.

	Open a text editor with a new file

	Add two columns per bin you want, the first
column should be low-edge of the bin while
the second column should be the high-edge
of the bin. Like so:

0.10 0.15

	Now add as many such lines as the number of bins you
want. Here is a valid example:

0.10 0.15
0.15 0.50
0.50 5.00

This example specifies 3 bins, with the individual
bin limits specified on each line. Notice that the
width of each bin can be independently specified (but
the bins do have to be continuous)

Note

Make sure that the bins are in increasing order – smallest bin first, then the next smallest
bin and so on up to the largest bin.

 Which correlation function to use?

Which correlation function to use?

Corrfunc has a variety of correlation functions to cover a broad range of Science applications. The basic distinction occurs if the input particles are directly
from a simulation or from an observational survey (or equivalently, a simulation that has been processed to look like a survey). For simulation data, referred throughout
as theory, the assumption is that the particle positions are Cartesian, co-moving XYZ. For survey data, referred throughout as mocks, the assumption is that
particle positions are Right Ascension (0 – 360 deg), Declination (-90 – 90 deg) and CZ (speed of light multiplied by the redshift). Depending on the exact
type of data, and the desired correlation function you want, the following table should help you figure out which code you should use.

	Input Data

	Periodic

	Particle domain

	Desired correlation function

	Returns

	Python code

	X, Y, Z

	True

	Cube (box)

	wp(\(r_p\))

	2-D Projected Correlation

	Corrfunc.theory.wp

	\(\xi(r)\)

	3-D Real-space Correlation

	Corrfunc.theory.xi

	X, Y, Z

	True or False

	Arbitrary

	\(\xi(r)\)

	Pair-counts in 3-D real-space

	Corrfunc.theory.DD

	\(\xi(r_p, \pi)\)

	Pair-counts in 2-D

	Corrfunc.theory.DDrppi

	\(\xi(s, \mu)\)

	Pair-counts in 2-D

	Corrfunc.theory.DDsmu

	ra, dec, cz

	False

	Arbitrary

	\(\xi(r_p, \pi)\)

	Pair-counts in 2-D

	Corrfunc.mocks.DDrppi_mocks

	\(\xi(s, \mu)\)

	Pair-counts in 2-D

	Corrfunc.mocks.DDsmu_mocks

	ra, dec

	False

	Arbitrary

	\(\omega(\theta)\)

	Pair-counts in angular space

	Corrfunc.mocks.DDtheta_mocks

In all cases where only pair-counts are returned (e.g., all of the mocks routines), you will need to compute at least
an additional RR term. Please see Corrfunc.utils.convert_3d_counts_to_cf to
convert 3-D pair-counts (or angular pair counts) into a correlation
function. For 2-D pair-counts, please use Corrfunc.utils.convert_rp_pi_counts_to_wp
to convert into a projected correlation function. If you want to compute
the \(\xi(r_p, \pi)\) from the 2-D pair-counts, then simply call
Corrfunc.utils.convert_3d_counts_to_cf with the arrays.

Also, see Using the command-line interface in Corrfunc for a detailed list of the clustering statistics and the various available API interfaces.

 Converting 3D pair counts into a correlation function

Converting 3D pair counts into a correlation function

3D pair counts can be converted into a correlation function
by using the helper function Corrfunc.utils.convert_3d_counts_to_cf.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.theory.DD

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> from Corrfunc.theory.DD import DD
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> # Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> nthreads = 2

Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note that +1 to nbins

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... periodic=False, verbose=True)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DD(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

All the pair counts are done, get the correlation function
>>> cf = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

 Converting \((r_p, \pi)\) pairs into a projected correlation function

Converting \((r_p, \pi)\) pairs into a projected correlation function

Pair counts in \((r_p, \pi)\) can be converted into a projected correlation function
by using the helper function Corrfunc.utils.convert_rp_pi_counts_to_wp.

>>> import numpy as np
>>> from Corrfunc.theory import DDrppi
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0

Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 2
>>> pimax = 40.0

Setup the bins
>>> nrpbins = 10
>>> bins = np.linspace(0.1, 10.0, nrpbins + 1)

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi(autocorr, nthreads, pimax, bins, X, Y, Z,
... periodic=False, verbose=True)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi(autocorr, nthreads, pimax, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi(autocorr, nthreads, pimax, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

All the pair counts are done, get the correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nrpbins, pimax)

See the complete reference here Corrfunc.

 Directly Computing \(\xi(r)\) and \(wp(rp)\)

Directly Computing \(\xi(r)\) and \(wp(rp)\)

For a periodic cosmological box, the 3-d auto correlation, \(\xi(r)\), and
the projected auto correlation function, \(wp(rp)\), can be directly computed
using the Natural Estimator. The relevant python wrappers are present in
Corrfunc.theory.xi and Corrfunc.theory.wp. See Notes on the Random-Random Term in Autocorrelations
for details on how the Natural Estimator is computed.

>>> import numpy as np
>>> from Corrfunc.theory.wp import wp
>>> from Corrfunc.theory.xi import xi
>>> from Corrfunc.io import read_catalog
>>> X, Y, Z = read_catalog()
>>> boxsize = 420.0
>>> nthreads = 2
>>> pimax = 40.0
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # Note the + 1 to nbins
>>> wp_counts = wp(boxsize, pimax, nthreads, bins, X, Y, Z)
>>> xi_counts = xi(boxsize, nthreads, bins, X, Y, Z)

See the complete reference here Corrfunc.

 Detailed API for Clustering Statistics on Simulations

Detailed API for Clustering Statistics on Simulations

All of these can be imported from Corrfunc.theory. See the complete reference here Corrfunc.

Clustering in 3-D

	Pair counts for (auto or cross) correlations for \(\xi(r)\) – Corrfunc.theory.DD

	Auto-correlation on periodic, cosmological boxes, \(\xi(r)\), – Corrfunc.theory.xi

Clustering in 2-D

	Pair counts (auto or cross) correlations for \(\xi(rp, \pi)\) – Corrfunc.theory.DDrppi

	Pair counts (auto or cross) correlations for \(\xi(s, \mu)\) – Corrfunc.theory.DDsmu

	Projected auto-correlation function, \(wp(rp)\) – Corrfunc.theory.wp

Counts-in-cells

	Void Probability functions and counts-in-cells stats \(pN(r)\) – Corrfunc.theory.vpf

 Notes on the Random-Random Term in Autocorrelations

Notes on the Random-Random Term in Autocorrelations

The following discussion is adapted from this notebook [http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2] by Lehman Garrison [https://lgarrison.github.io].

\[\newcommand{\RR}{\mathrm{RR}}
\newcommand{\DD}{\mathrm{DD}}\]

When computing a two-point correlation function estimator like

\[\xi(r) = \frac{\DD}{\RR} - 1,\]

the \(\RR\) term can be computed analytically if the domain is a periodic box.
Often, this is done as

\[\begin{split}\begin{align}
\RR_i &= N V_i \bar\rho \\
&= N V_i \frac{N}{L^3}
\end{align}\end{split}\]

where \(\RR_i\) is the expected number of random-random pairs in bin \(i\), \(N\) is the total number of points, \(V_i\) is the volume (or area if 2D) of bin \(i\), \(L\) is the box size, and \(\bar\rho\) is the average density in the box.

However, using \(\bar\rho = \frac{N}{L^3}\) is only correct for continuous fields, not sets of particles. When sitting on a particle, only \(N-1\) particles are available to be in a bin at some non-zero distance. The remaining particle is the particle you’re sitting on, which is always at distance \(0\). Thus, the correct expression is

\[\RR_i = N V_i \frac{N-1}{L^3}.\]

See this notebook [http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2] for an empirical demonstration of this effect; specifically, that computing the density with \(N-1\) is correct, and that using \(N\) introduces bias of order \(\frac{1}{N}\) into the estimator. This is a tiny correction for large \(N\) problems, but important for small \(N\).

Any Corrfunc function that returns a clustering statistic (not just raw pair counts) implements this correction.
Currently, this includes Corrfunc.theory.xi and Corrfunc.theory.wp.

Cross-correlations of two different particle sets don’t suffer from this problem; the particle you’re sitting on is never part of the set of particles under consideration for pair-making.

Corrfunc also allows bins of zero separation, in which “self-pairs” are included in the pair counting. \(\RR_i\) must reflect this by simply adding \(N\) to any such bin.

RR in Weighted Clustering Statistics

We can extend the above discussion to weighted correlation functions in which
each particle is assigned a weight, and the pair weight is taken as the product
of the particle weights (see Computing Weighted Correlation Functions).

Let \(w_j\) be the weight of particle \(j\), and \(W\) be the sum of the weights.
We will define the “unclustered” particle distribution to be the case of \(N\) particles
uniformly distributed, where each is assigned the mean weight \(\bar w\). We thus have

\[\begin{split}\begin{align}
\RR_i &= \sum_{j=1}^N \bar w (W - \bar w) \frac{V_i}{L^3} \\
&= (W^2 - \bar w W) \frac{V_i}{L^3} \\
&= W^2\left(1 - \frac{1}{N}\right) \frac{V_i}{L^3}.
\end{align}\end{split}\]

When the particles all have \(w_j = 1\), then \(W = N\) and we recover the unweighted result from above.

There are other ways to define the unclustered distribution. If we were to redistribute
the particles uniformly but preserve their individual weights, we would find

\[\begin{split}\begin{align}
\RR_i &= \sum_{j=1}^N w_j (W - w_j) \frac{V_i}{L^3} \\
&= \left(W^2 - \sum_{j=1}^N w_j^2\right) \frac{V_i}{L^3}.
\end{align}\end{split}\]

This is not what we use in Corrfunc, but this should help illuminate some of the considerations that
go into defining the “unclustered” case when writing a custom weight function (see Implementing Custom Weight Functions).

 Calculating the projected correlation function, \(wp(rp)\)

Calculating the projected correlation function, \(wp(rp)\)

2-D Pair counts can be converted into a \(wp(rp)\)
by using the helper function Corrfunc.utils.convert_rp_pi_counts_to_wp.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.mocks.DDrppi_mocks

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_mock_northonly.rdcz.ff")

Read the supplied galaxies on a periodic box
>>> RA, DEC, CZ = read_catalog(galaxy_catalog)
>>> N = len(RA)

Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, rand_CZ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 20.0, nbins + 1)
>>> pimax = 40.0

>>> cosmology = 1
>>> nthreads = 2

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ,
... RA2=rand_RA, DEC2=rand_DEC, CZ2=rand_CZ)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... rand_RA, rand_DEC, rand_CZ)

All the pair counts are done, get the angular correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nbins, pimax)

See the complete reference here Corrfunc.

 Calculating the angular correlation function, \(\omega(\theta)\)

Calculating the angular correlation function, \(\omega(\theta)\)

Angular pair counts can be converted into a \(\omega(\theta)\)
by using the helper function Corrfunc.utils.convert_3d_counts_to_cf.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.mocks.DDtheta_mocks

>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data",
... "Mr19_mock_northonly.rdcz.ff")

Read the supplied galaxies on a periodic box
>>> RA, DEC, _ = read_catalog(galaxy_catalog)

Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, _ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note the +1 to nbins

Number of threads to use
>>> nthreads = 2

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC,
... RA2=rand_RA, DEC2=rand_DEC)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... rand_RA, rand_DEC)

All the pair counts are done, get the angular correlation function
>>> wtheta = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

 Detailed API for Clustering Statistics on Mock Catalogs

Detailed API for Clustering Statistics on Mock Catalogs

All of these can be imported from Corrfunc.mocks. See the complete reference here Corrfunc.`

Clustering in 2-D

	Pair counts (auto or cross) correlations for \(\xi(rp, \pi)\) – Corrfunc.mocks.DDrppi_mocks

	Pair counts (auto or cross) correlations for \(\xi(s, \mu)\) – Corrfunc.mocks.DDsmu_mocks

Angular clustering

	Pair counts (auto or cross) correlations for \(\omega(\theta)\) – Corrfunc.mocks.DDtheta_mocks

Counts-in-cells

	Void Probability functions and counts-in-cells stats \(pN(r)\) – Corrfunc.mocks.vpf_mocks

 Computing Weighted Correlation Functions

Computing Weighted Correlation Functions

Every clustering statistic in Corrfunc accepts an array
of weights that can be used to compute weighted correlation
functions. The API reference for each clustering statistic
(Corrfunc.theory.xi, Corrfunc.mocks.DDrppi_mocks,
etc.) contains examples of how to do this. The interface is standard across functions: the
inputs are a weights array and a weight_type string
that specifies how to use the “point weights” to compute a “pair weight”.
Currently, the only supported weight_type is pair_product,
in which the pair weight is the product of the point weights
(but see Implementing Custom Weight Functions for how to write your own
function).

Warning

The computation of the weighted result is susceptible to loss of floating
point precision, especially in single precision. If you are using single
precision, make sure you test double precision as well (by casting all
pos and weight input arrays to type np.float64, for example)
and check that the difference with the single-precision result
is acceptable.

 Implementing Custom Weight Functions

Implementing Custom Weight Functions

Corrfunc supports custom weight functions. On this page we describe
the recommended procedure for writing your own. When in doubt, follow
the example of pair_product.

First, see Computing Weighted Correlation Functions for basic usage of Corrfunc’s weight features.

The steps are:

	Add a type to the weight_method_t enum in utils/defs.h (something like MY_WEIGHT_SCHEME=1).

	Determine how many weights per particle your scheme needs, and add a case to the switch-case block in get_num_weights_by_method() in utils/defs.h. Corrfunc supports up to MAX_NUM_WEIGHTS=10 weights per particle; most schemes will simply need 1. To provide multiple weights per particle via the Python interface, simply pass a weights array of shape (N_WEIGHTS_PER_PARTICLE, N_PARTICLES).

	Add an if statement that maps a string name (like “my_weight_scheme”) to the weight_method_t (which you created above) in get_weight_method_by_name() in utils/defs.h.

	Write a function in utils/weight_functions.h.src that returns the weight for a particle pair, given the weights for the two particles. The weights for each particle are packed in a const pair_struct_DOUBLE struct, which also contains the pair separation. You must write one function for every instruction set you wish to support. This can be quite easy for simple weight schemes; the four functions for pair_product are:

/*
 * The pair weight is the product of the particle weights
 */
static inline DOUBLE pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return pair->weights0[0].d*pair->weights1[0].d;
}

#ifdef __AVX512F__
static inline AVX512_FLOATS avx512_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return AVX512_MULTIPLY_FLOATS(pair->weights0[0].a512, pair->weights1[0].a512);
}
#endif

#ifdef __AVX__
static inline AVX_FLOATS avx_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return AVX_MULTIPLY_FLOATS(pair->weights0[0].a, pair->weights1[0].a);
}
#endif

#ifdef __SSE4_2__
static inline SSE_FLOATS sse_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return SSE_MULTIPLY_FLOATS(pair->weights0[0].s, pair->weights1[0].s);
}
#endif

See utils/avx512_calls.h, utils/avx_calls.h and utils/sse_calls.h for the lists of available vector instructions.

	For each function you wrote in the last step, add a case to the switch-case
block in the appropriate dispatch function in
utils/weight_functions.h.src. If you wrote a weighting function for all
four instruction sets, then you’ll need to add the corresponding function to
get_weight_func_by_method_DOUBLE(),
get_avx512_weight_func_by_method_DOUBLE,
get_avx_weight_func_by_method_DOUBLE(),
and get_sse_weight_func_by_method_DOUBLE().

	Done! Your weight scheme should now be accessible through the Python and C interfaces via the name (“my_weight_scheme”) that you specified above. The output will be accessible in the weightavg field of the results array.

Pair counts (i.e. the npairs field in the results array)
are never affected by weights. For theory functions like Corrfunc.theory.xi and Corrfunc.theory.wp
that actually return a clustering statistic, the statistic is weighted.
For pair_product, the random distribution used to compute the
expected bin weight from an unclustered particle set (the RR term)
is taken to be a spatially uniform particle set where every particle
has the mean weight. See RR in Weighted Clustering Statistics for more discussion.
This behavior (automatically returning weighted clustering statistics)
is only implemented for pair_product, since that is the only weighting
method for which we know the desired equivalent random distribution.
Custom weighting methods can implement similar behavior by modifying
countpairs_xi_DOUBLE() in theory/xi/countpairs_xi_impl.c.src and
countpairs_wp_DOUBLE() in theory/wp/countpairs_wp_impl.c.src.

 Developer documentation

Developer documentation

The developer documentation contains guidlines for how to
stay up-to-date on Corrfunc development, submit bug reports and
contribute to the Corrfunc code base.

	License and Citation Information

	Package contributors

	Submitting a Bug Report

	Staying Up to Date

	Contributing to Corrfunc

 License and Citation Information

License and Citation Information

Citing Corrfunc

If you use Corrfunc for research, please cite using the MNRAS code paper with the following
bibtex entry:

@ARTICLE{2020MNRAS.491.3022S,
 author = {{Sinha}, Manodeep and {Garrison}, Lehman H.},
 title = "{CORRFUNC - a suite of blazing fast correlation functions on
 the CPU}",
 journal = {\mnras},
 keywords = {methods: numerical, galaxies: general, galaxies:
 haloes, dark matter, large-scale structure of Universe, cosmology:
 theory},
 year = "2020",
 month = "Jan",
 volume = {491},
 number = {2},
 pages = {3022-3041},
 doi = {10.1093/mnras/stz3157},
 adsurl =
 {https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3022S},
 adsnote = {Provided by the SAO/NASA
 Astrophysics Data System}
}

The MNRAS paper (also on arXiv:1911.03545 [https://arxiv.org/abs/1911.03545]) targets Corrfunc v2.0.0. If you are
using Corrfunc v2.3.0 or later, and you benefit from the
enhanced vectorised kernels, then please additionally cite this paper:

@InProceedings{10.1007/978-981-13-7729-7_1,
 author="Sinha, Manodeep and Garrison, Lehman",
 editor="Majumdar, Amit and Arora, Ritu",
 title="CORRFUNC: Blazing Fast Correlation Functions with AVX512F SIMD Intrinsics",
 booktitle="Software Challenges to Exascale Computing",
 year="2019",
 publisher="Springer Singapore",
 address="Singapore",
 pages="3--20",
 isbn="978-981-13-7729-7",
 url={https://doi.org/10.1007/978-981-13-7729-7_1}
}

Corrfunc License

Corrfunc comes with a MIT LICENSE - see the LICENSE file.

Copyright (C) 2014 Manodeep Sinha (manodeep@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 Package contributors

Package contributors

Corrfunc project coordinator

	Manodeep Sinha

Lead developers

	Manodeep Sinha

Core package contributors

	Manodeep Sinha (@manodeep)

	Lehman Garrison (@lgarrison)

	Nick Hand (@nickhand)

Other credits

	Corrfunc contains code from Agner Fog [https://agner.org], GeometricTools [http://www.geometrictools.com/], and the package SGLIB [http://sglib.sourceforge.net/]. The LICENSE for these external files
remains with the original author of the package.

	The entirety of the docs for Corrfunc is derived from halotools [https://github.com/astropy/halotools]. I know, first-hand, how much of an
effort it was for the developers of halotools to generate all of this
documentation. Having such a template made creating the docs for Corrfunc a
lot easier process.

	The API generation script for Corrfunc was lifted directly out of the
repo bccp/nbodykit/ [https://github.com/bccp/nbodykit/].

 Submitting a Bug Report

Submitting a Bug Report

If you find or just suspect buggy behavior in Corrfunc,
please raise an issue on GitHub. Navigate to the
Corrfunc Issues page [https://github.com/manodeep/Corrfunc/issues],
create a new issue with a description of the problem and
the full Traceback (if applicable), and attach a bug label to the issue.

 Staying Up to Date

Staying Up to Date

If you would like to receive notifications of new code releases, sign up for the google group

https://groups.google.com/forum/#!forum/Corrfunc

Feel free to ask questions about the code on the group. However, note that all
exchanges on the groups are subject to Astropy Community Code of Conduct [http://www.astropy.org/about.html#codeofconduct],
which is basically, “Be nice!”. If you are unsure about some technical aspect
of the code, then feel free to email the author (Manodeep Sinha).

 Contributing to Corrfunc

Contributing to Corrfunc

Corrfunc is written in a very modular fashion with minimal interaction between
the various calculations. The algorithm presented in Corrfunc is applicable to
a broad-range of astrophysical problems, viz., any situation that requires
looking at all objects around a target and performing some analysis with
this group of objects.

Here are the basic steps to get your statistic into the Corrfunc package:

	Fork the repo and add your statistic

	Add exhaustive tests. The output of your statistic should exactly agree with a
brute-force implementation (under double-precision). Look at test_periodic.c and test_nonperiodic.c
under theory/tests/ for tests on simulation volumes. For mock
catalogs, look at mocks/tests/tests_mocks.c.

	Add a python extension for the new statistic. This extension should reside in file
theory/python_bindings/_countpairs.c or
mocks/python_bindings/_countpairs_mocks.c for statistics relevant for
simulations and mocks respectively. It is preferred to have the extension
documented but not necessary.

	Add a call to this new extension in the
python_bindings/call_correlation_functions*.py script.

Note

Different from corresponding script in Corrfunc/ directory.

 Comprehensive API reference

Comprehensive API reference

	Corrfunc package
	Subpackages
	Corrfunc.mocks package

	Corrfunc.theory package

	Corrfunc.io module

	Corrfunc.utils module

 Corrfunc package

Corrfunc package

Corrfunc is a set of high-performance routines for
computing clustering statistics on a distribution of
points.

	
Corrfunc.read_text_file(filename, encoding=u'utf-8')

	Reads a file under python3 with encoding (default UTF-8).
Also works under python2, without encoding.
Uses the EAFP (https://docs.python.org/2/glossary.html#term-eafp)
principle.

	
Corrfunc.which(program, mode=1, path=None)

	Mimics the Unix utility which.
For python3.3+, shutil.which provides all of the required functionality.
An implementation is provided in case shutil.which does
not exist.

	Parameters:

	
	program – (required) string
Name of program (can be fully-qualified path as well)

	mode – (optional) integer flag bits
Permissions to check for in the executable
Default: os.F_OK (file exists) | os.X_OK (executable file)

	path – (optional) string
A custom path list to check against. Implementation taken from
shutil.py.

	Returns:

	A fully qualified path to program as resolved by path or
user environment.
Returns None when program can not be resolved.

	
Corrfunc.write_text_file(filename, contents, encoding=u'utf-8')

	Writes a file under python3 with encoding (default UTF-8).
Also works under python2, without encoding.
Uses the EAFP (https://docs.python.org/2/glossary.html#term-eafp)
principle.

Subpackages

	Corrfunc.mocks package

	Corrfunc.theory package

Corrfunc.io module

Routines to read galaxy catalogs from disk.

	
Corrfunc.io.read_fastfood_catalog(filename, return_dtype=None, need_weights=None)

	Read a galaxy catalog from a fast-food binary file.

	Parameters:

	
	filename (string) – Filename containing the galaxy positions

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float64, np.float32}

	need_weights (boolean, default None.) – Returns weight array in addition to the X/Y/Z arrays.

	Returns:

	X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

	Return type:

	numpy arrays

Example

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_fastfood_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/data/",
... "gals_Mr19.ff")
>>> X, Y, Z = read_fastfood_catalog(filename)
>>> N = 20
>>> for x,y,z in zip(X[0:N], Y[0:N], Z[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(x, y, z))
... # doctest: +NORMALIZE_WHITESPACE
419.94550 1.96340 0.01610
419.88272 1.79736 0.11960
0.32880 10.63620 4.16550
0.15314 10.68723 4.06529
0.46400 8.91150 6.97090
6.30690 9.77090 8.61080
5.87160 9.65870 9.29810
8.06210 0.42350 4.89410
11.92830 4.38660 4.54410
11.95543 4.32622 4.51485
11.65676 4.34665 4.53181
11.75739 4.26262 4.31666
11.81329 4.27530 4.49183
11.80406 4.54737 4.26824
12.61570 4.14470 3.70140
13.23640 4.34750 5.26450
13.19833 4.33196 5.29435
13.21249 4.35695 5.37418
13.06805 4.24275 5.35126
13.19693 4.37618 5.28772

	
Corrfunc.io.read_ascii_catalog(filename, return_dtype=None)

	Read a galaxy catalog from an ascii file.

	Parameters:

	
	filename (string) – Filename containing the galaxy positions

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float64, np.float32}

	Returns:

	X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

	Return type:

	numpy arrays

Example

>>> from __future__ import print_function
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_ascii_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/", "Mr19_mock_northonly.rdcz.dat")
>>> ra, dec, cz = read_ascii_catalog(filename)
>>> N = 20
>>> for r,d,c in zip(ra[0:N], dec[0:N], cz[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(r, d, c))
... # doctest: +NORMALIZE_WHITESPACE
178.45087 67.01112 19905.28514
178.83495 67.72519 19824.02285
179.50132 67.67628 19831.21553
182.75497 67.13004 19659.79825
186.29853 68.64099 20030.64412
186.32346 68.65879 19763.38137
187.36173 68.15151 19942.66996
187.20613 68.56189 19996.36607
185.56358 67.97724 19729.32308
183.27930 67.11318 19609.71345
183.86498 67.82823 19500.44130
184.07771 67.43429 19440.53790
185.13370 67.15382 19390.60304
189.15907 68.28252 19858.85853
190.12209 68.55062 20044.29744
193.65245 68.36878 19445.62469
194.93514 68.34870 19158.93155
180.36897 67.50058 18671.40780
179.63278 67.51318 18657.59191
180.75742 67.95530 18586.88913

	
Corrfunc.io.read_catalog(filebase=None, return_dtype=<Mock id='139917562686800'>)

	Reads a galaxy/randoms catalog and returns 3 XYZ arrays.

	Parameters:

	
	filebase (string (optional)) – The fully qualified path to the file. If omitted, reads the
theory galaxy catalog under ../theory/tests/data/

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float64, np.float32}

	Returns:

	
	x y z - Unpacked numpy arrays compatible with the installed

	version of Corrfunc.

Note

If the filename is omitted, then first the fast-food file
is searched for, and then the ascii file. End-users should always
supply the full filename.

 Corrfunc.mocks package

Corrfunc.mocks package

Wrapper for all clustering statistic calculations on galaxies
in a mock catalog.

	
Corrfunc.mocks.DDrppi_mocks(autocorr, cosmology, nthreads, pimax, binfile, RA1, DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None, weights2=None, is_comoving_dist=False, verbose=False, output_rpavg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, enable_min_sep_opt=True, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the pair-counts corresponding to the 2-D correlation
function, \(\xi(r_p, \pi)\). Pairs which are separated by less
than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted. The input positions are expected to be on-sky co-ordinates.
This module is suitable for calculating correlation functions for mock
catalogs.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Returns a numpy structured array containing the pair counts for the
specified bins.

Note

that this module only returns pair counts and not the actual
correlation function \(\xi(r_p, \pi)\) or \(wp(r_p)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf and
Corrfunc.utils.convert_rp_pi_counts_to_wp for computing
\(\xi(r_p, \pi)\) and \(wp(r_p)\) respectively from the
pair counts.

 Corrfunc.theory package

Corrfunc.theory package

Wrapper for all clustering statistic calculations on galaxies
in a simulation volume.

	
Corrfunc.theory.DD(autocorr, nthreads, binfile, X1, Y1, Z1, weights1=None, periodic=True, boxsize=None, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, enable_min_sep_opt=True, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 3-D pair-counts corresponding to the real-space correlation
function, \(\xi(r)\).

If weights are provided, the mean pair weight is stored in the
"weightavg" field of the results array. The raw pair counts in the
"npairs" field are not weighted. The weighting scheme depends on
weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(r)\). See
Corrfunc.utils.convert_3d_counts_to_cf for computing
\(\xi(r)\) from the pair counts returned.

 Package contributors

Package contributors

Corrfunc project coordinator

	Manodeep Sinha

Lead developers

	Manodeep Sinha

Core package contributors

	Manodeep Sinha (@manodeep)

	Lehman Garrison (@lgarrison)

	Nick Hand (@nickhand)

Other credits

	Corrfunc contains code from Agner Fog [https://agner.org], GeometricTools [http://www.geometrictools.com/], and the package SGLIB [http://sglib.sourceforge.net/]. The LICENSE for these external files
remains with the original author of the package.

	The entirety of the docs for Corrfunc is derived from halotools [https://github.com/astropy/halotools]. I know, first-hand, how much of an
effort it was for the developers of halotools to generate all of this
documentation. Having such a template made creating the docs for Corrfunc a
lot easier process.

	The API generation script for Corrfunc was lifted directly out of the
repo bccp/nbodykit/ [https://github.com/bccp/nbodykit/].

 License and Citation Information

License and Citation Information

Citing Corrfunc

If you use Corrfunc for research, please cite using the MNRAS code paper with the following
bibtex entry:

@ARTICLE{2020MNRAS.491.3022S,
 author = {{Sinha}, Manodeep and {Garrison}, Lehman H.},
 title = "{CORRFUNC - a suite of blazing fast correlation functions on
 the CPU}",
 journal = {\mnras},
 keywords = {methods: numerical, galaxies: general, galaxies:
 haloes, dark matter, large-scale structure of Universe, cosmology:
 theory},
 year = "2020",
 month = "Jan",
 volume = {491},
 number = {2},
 pages = {3022-3041},
 doi = {10.1093/mnras/stz3157},
 adsurl =
 {https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3022S},
 adsnote = {Provided by the SAO/NASA
 Astrophysics Data System}
}

The MNRAS paper (also on arXiv:1911.03545 [https://arxiv.org/abs/1911.03545]) targets Corrfunc v2.0.0. If you are
using Corrfunc v2.3.0 or later, and you benefit from the
enhanced vectorised kernels, then please additionally cite this paper:

@InProceedings{10.1007/978-981-13-7729-7_1,
 author="Sinha, Manodeep and Garrison, Lehman",
 editor="Majumdar, Amit and Arora, Ritu",
 title="CORRFUNC: Blazing Fast Correlation Functions with AVX512F SIMD Intrinsics",
 booktitle="Software Challenges to Exascale Computing",
 year="2019",
 publisher="Springer Singapore",
 address="Singapore",
 pages="3--20",
 isbn="978-981-13-7729-7",
 url={https://doi.org/10.1007/978-981-13-7729-7_1}
}

Corrfunc License

Corrfunc comes with a MIT LICENSE - see the LICENSE file.

Copyright (C) 2014 Manodeep Sinha (manodeep@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 Corrfunc	

 	
 	
 Corrfunc.io	

 	
 	
 Corrfunc.mocks	

 	
 	
 Corrfunc.theory	

 	
 	
 Corrfunc.utils	

 Index

Index

 C
 | D
 | F
 | G
 | R
 | T
 | V
 | W
 | X

C

 	
 	compute_nbins() (in module Corrfunc.utils)

 	convert_3d_counts_to_cf() (in module Corrfunc.utils)

 	convert_rp_pi_counts_to_wp() (in module Corrfunc.utils)

 	Corrfunc (module)

 	
 	Corrfunc.io (module)

 	Corrfunc.mocks (module)

 	Corrfunc.theory (module)

 	Corrfunc.utils (module)

D

 	
 	DD() (in module Corrfunc.theory)

 	DDrppi() (in module Corrfunc.theory)

 	DDrppi_mocks() (in module Corrfunc.mocks)

 	
 	DDsmu() (in module Corrfunc.theory)

 	DDsmu_mocks() (in module Corrfunc.mocks)

 	DDtheta_mocks() (in module Corrfunc.mocks)

F

 	
 	fix_cz() (in module Corrfunc.utils)

 	
 	fix_ra_dec() (in module Corrfunc.utils)

G

 	
 	gridlink_sphere() (in module Corrfunc.utils)

R

 	
 	read_ascii_catalog() (in module Corrfunc.io)

 	read_catalog() (in module Corrfunc.io)

 	
 	read_fastfood_catalog() (in module Corrfunc.io)

 	read_text_file() (in module Corrfunc)

 	return_file_with_rbins() (in module Corrfunc.utils)

T

 	
 	translate_isa_string_to_enum() (in module Corrfunc.utils)

V

 	
 	vpf() (in module Corrfunc.theory)

 	
 	vpf_mocks() (in module Corrfunc.mocks)

W

 	
 	which() (in module Corrfunc)

 	
 	wp() (in module Corrfunc.theory)

 	write_text_file() (in module Corrfunc)

X

 	
 	xi() (in module Corrfunc.theory)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/corrfunc_logo_320px_240px.png
corrfunc

_static/file.png

_images/corrfunc_logo_320px_240px.png
corrfunc

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Corrfunc Documentation

 		
 Package Installation

 		
 Using pip

 		
 Building from source

 		
 Dependencies

 		
 Verifying your installation

 		
 Getting started with Corrfunc

 		
 Computing Clustering Statistics with Corrfunc

 		
 Available Corrfunc interfaces

 		
 Using the python extensions in Corrfunc

 		
 Using the static library interface in Corrfunc

 		
 Using the command-line interface in Corrfunc

 		
 Cheat-sheet for all available interfaces in Corrfunc

 		
 Typical Tasks for Computing Correlation Functions

 		
 Reading input data

 		
 Reading Catalogs for Corrfunc

 		
 Creating a file with bins for the clustering statistics

 		
 Specifying the separation bins in Corrfunc

 		
 Choosing the correlation function

 		
 Which correlation function to use?

 		
 Calculating Correlation Functions on Simulations

 		
 Converting 3D pair counts into a correlation function

 		
 Converting (r_p, \pi) pairs into a projected correlation function

 		
 Directly Computing \xi(r) and wp(rp)

 		
 Detailed API for Clustering Statistics on Simulations

 		
 Notes on the Random-Random Term in Autocorrelations

 		
 Calculating Correlation Functions on Mock Catalogs

 		
 Calculating the projected correlation function, wp(rp)

 		
 Calculating the angular correlation function, \omega(\theta)

 		
 Detailed API for Clustering Statistics on Mock Catalogs

 		
 Weighted Correlation Functions

 		
 Computing Weighted Correlation Functions

 		
 Implementing Custom Weight Functions

 		
 Developer documentation

 		
 License and Citation Information

 		
 Citing Corrfunc

 		
 Corrfunc License

 		
 Package contributors

 		
 Corrfunc project coordinator

 		
 Lead developers

 		
 Core package contributors

 		
 Other credits

 		
 Submitting a Bug Report

 		
 Staying Up to Date

 		
 Contributing to Corrfunc

 		
 Corrfunc Design

 		
 Directory and file layout

 		
 Coding Guidelines

 		
 Comprehensive API reference

 		
 Corrfunc package

 		
 Subpackages

 		
 Corrfunc.io module

 		
 Corrfunc.utils module

 		
 Package contributors

 		
 Corrfunc project coordinator

 		
 Lead developers

 		
 Core package contributors

 		
 Other credits

 		
 License and Citation Information

