
Corrfunc Documentation
Release 2.3.1

Manodeep Sinha <manodeep@gmail.com>

Dec 23, 2019





Contents

1 Overview of Corrfunc 3

2 Reference 33

3 License and Credits 75

Python Module Index 77

Index 79

i



ii



Corrfunc Documentation, Release 2.3.1

Corrfunc is a set of high-performance routines to measure clustering statistics. The main features of Corrfunc are:

• Fast All theory pair-counting is at least an order of magnitude faster than all existing public codes. Particularly
suited for MCMC.

• OpenMP Parallel All pair-counting codes can be done in parallel (with strong scaling efficiency >~ 95% up to
10 cores)

• Python Extensions Python extensions allow you to do the compute-heavy bits using C while retaining all of the
user-friendliness of python.

• Modular The code is written in a modular fashion and is easily extensible to compute arbitrary clustering
statistics.

• Future-proof As I get access to newer instruction-sets, the codes will get updated to use the latest and greatest
CPU features.

The source code is publicly available at https://github.com/manodeep/Corrfunc.

Contents 1

https://github.com/manodeep/Corrfunc


Corrfunc Documentation, Release 2.3.1

2 Contents



CHAPTER 1

Overview of Corrfunc

1.1 Package Installation

To install Corrfunc, you can either use pip or clone the repo from GitHub and build the source code. Either way, be
sure to read the Dependencies section prior to installation.

1.1.1 Using pip

The simplest way to install the latest release of the code is with pip. Before installation, be sure you have installed the
package dependencies described in the Dependencies section

pip install Corrfunc

This will install the latest official release of the code. If you want the latest master branch, you will need to build the
code from source following the instructions in the next section.

1.1.2 Building from source

If you don’t install the latest release using pip, you can instead clone the cource code and call the setup file. Before
installation, be sure you have installed the package dependencies described in the Dependencies section. The first step
is to clone the Corrfunc repository

git clone https://github.com/manodeep/Corrfunc.git
cd Corrfunc
make install
python setup.py install

1.1.3 Dependencies

The command-line version of Corrfunc needs the following packages to be installed:

3



Corrfunc Documentation, Release 2.3.1

• make: 3.80 or later

• C compiler: gcc >=4.6, clang, icc. Multi-threading will be disabled if the compiler does not support OpenMP.

• gsl: any recent version

If you plan to use the C extensions, then the following are required:

• Python: 2.7 or later

• Numpy: 1.7 or later

Any of the above can be installed with either pip or conda.

1.1.4 Verifying your installation

After installing Corrfunc, you should run the integrated test suite to make sure that the package was installed correctly.
If you installed from source, then type the following in the root package directory,

make tests

If you installed using pip/conda, then use the following to run the tests

from Corrfunc.tests import tests
tests()

Once you have installed the package, see Getting started with Corrfunc for instructions on how to get up and running.

1.2 Getting started with Corrfunc

Corrfunc is a set of high-performance routines to measure clustering statistics. The codes are divided conceptually
into two different segments:

• theory - calculates clustering statistics on simulation volumes. Input positions are expected to be Cartesian
X/Y/Z. Periodic boundary conditions are supported. Relevant C codes are in directory theory/

• mocks - calculates clustering statistics on observation volumes. Input positions are assumed to be in obverser
frame, Right Ascension, Declination and SpeedofLight*Redshift (where required; 𝜔(𝜃) only
needs RA and DEC). Relevant C codes are in directory mocks/

This getting-started guide assumes you have already followed the Package Installation section of the documentation
to get the package and its dependencies set up on your machine.

If you want to compute correlation functions and have installed the python extensions, then see Typical Tasks for
Computing Correlation Functions for typical tasks. Otherwise, read on for the various interfaces available within
Corrfunc.

1.2.1 Computing Clustering Statistics with Corrfunc

Corrfunc supports three separate mechanisms to compute the clustering statistics:

• Via python (if you have python and numpy installed)

Pros: Fully flexible API to modulate code behaviour at runtime. For instance, calculations can be performed in
double-precision simply by passing arrays of doubles (rather than floats).

Cons: Has fixed python overhead. For low particle numbers, can be as much as 20% slower compared to the
command-line executables.

4 Chapter 1. Overview of Corrfunc

https://www.gnu.org/software/make/
https://gcc.gnu.org/
https://www.gnu.org/software/gsl/
http://www.python.org/
http://www.numpy.org/


Corrfunc Documentation, Release 2.3.1

See Using the python extensions in Corrfunc for details on how to use the python interface.

• Via static libraries directly in C codes

Pros: Fully flexible API to modulate code behaviour at runtime. All features supported by the python extensions
are also supported here.

Cons: Requires coding in C. See example C codes invoking the theory and mocks in
the directories: theory/examples/run_correlations.c and mocks/examples/
run_correlations_mocks.c.

See Using the static library interface in Corrfunc for details on how to use the static library interface.

• Command-line executables

Pros: Fastest possible implementations of all clustering statistics

Cons: API is fixed. Any changes require full re-compilation.

See Using the command-line interface in Corrfunc for details on how to use the command-line executables.

1.2.2 Available Corrfunc interfaces

Using the python extensions in Corrfunc

This guide assumes that you already followed the Package Installation section of the documentation to get the package
and its dependencies set up on your machine. Rest of document also assumes that you have installed the C extensions
for python.

Importing Corrfunc

After installing Corrfunc you can open up a python terminal and import the base package by:

>>> import Corrfunc

All of the functionality is divided into theory routines and mocks routines. These routines can be independently
imported by using:

>>> from Corrfunc.theory import *
>>> from Corrfunc.mocks import *

You can access the full API documentation by simply typing:

help(DD) # theory pair-counter in 3-D separation (r)
help(DDrppi_mocks) # mocks pair-counter in 2-D (rp, pi)

First steps with Corrfunc

Overview of Corrfunc inputs

Broadly speaking, Corrfunc requires these following inputs:

• (At least) 3 arrays specifying the positions for the particles

– For Corrfunc.theory routines, these positions are Cartesian XYZ in co-moving Mpc/h units.

1.2. Getting started with Corrfunc 5



Corrfunc Documentation, Release 2.3.1

– For Corrfunc.mocks routines, these positions are Right Ascension, Declination, and
Speed of Light * Redshift or Co-moving distance. The angles are expected in degrees,
while the distance is expected in co-moving Mpc/h.

See Reading Catalogs for Corrfunc for details on how to read in arrays from a file.

• A boolean flag specifying in an auto-correlation or cross-correlation is being performed. In case of cross-
correlations, another set of 3 arrays must be passed as input. This second set of arrays typically represents
randoms for Corrfunc.mocks.

• A file containing the bins for the clustering statistic (where relevant). Look at theory/tests/bins for
an example of the contents of the file for spatial bins. See mocks/tests/angular_bins for an example
containing angular bins for mocks routines. Passing a filename is the most general way of specifying bins in
Corrfunc. However, you can also pass in a 1-D array for the bins.

See Specifying the separation bins in Corrfunc for details on how to specify the bins as a file as well as an array

See Typical Tasks for Computing Correlation Functions for a broad overview of the typical tasks associated with
computing correlation functions. Read on for the various pair-counters available within the python interfaces of
Corrfunc.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the counts-in-cells. For all of these calculations a
few inputs are required. The following code section sets up the default inputs that are used later on in the clustering
functions:

>>> import numpy as np
>>> from Corrfunc.io import read_catalog

# Read the default galaxies supplied with
# Corrfunc. ~ 1 million galaxies on a 420 Mpc/h cube
>>> X, Y, Z = read_catalog()

# Specify boxsize for the XYZ arrays
>>> boxsize = 420.0

# Number of threads to use
>>> nthreads = 2

# Create the bins array
>>> rmin = 0.1
>>> rmax = 20.0
>>> nbins = 20
>>> rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

# Specify the distance to integrate along line of sight
>>> pimax = 40.0

# Specify the max. of the cosine of the angle to the LOS for
# DD(s, mu)
>>> mu_max = 1.0

# Specify the number of linear bins in `mu`
>>> nmu_bins = 20

# Specify that an autocorrelation is wanted
>>> autocorr = 1

6 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

Calculating 2-D projected auto-correlation (Corrfunc.theory.wp)

Corrfunc can directly compute the projected auto-correlation function, 𝑤𝑝(𝑟𝑝). This calculation sets periodic boundary
conditions. Randoms are calculated analytically based on the supplied boxsize. The projected separation, 𝑟𝑝 is calcu-
lated in the X-Y plane while the line-of-sight separation, 𝜋 is calculated in the Z plane. Only pairs with 𝜋 separation
less than 𝜋𝑚𝑎𝑥 are counted.

from Corrfunc.theory.wp import wp
results_wp = wp(boxsize, pimax, nthreads, rbins, X, Y, Z)

Calculating 3-D autocorrelation (Corrfunc.theory.xi)

Corrfunc can also compute the 3-D auto-correlation function, 𝜉(𝑟). Like 𝑤𝑝(𝑟𝑝), this calculation also enforces periodic
boundary conditions and an auto-correlation. Randoms are calculated analytically on the supplied boxsize.

from Corrfunc.theory.xi import xi
results_xi = xi(boxsize, nthreads, rbins, X, Y, Z)

Calculating 3-D pair-counts (Corrfunc.theory.DD)

Corrfunc can return the pair counts in 3-D real-space for a set of arrays. The calculation can be either auto or cross-
correlation, and with or without periodic boundaries. The pairs are always double-counted. Additionally, if the
smallest bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DD import DD
results_DD = DD(autocorr, nthreads, rbins, X, Y, Z)

Calculating 2-D pair-counts (Corrfunc.theory.DDrppi)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The calculation can be either auto or cross-
correlation, and with or without periodic boundaries. The projected separation, 𝑟𝑝 is calculated in the X-Y plane while
the line-of-sight separation, 𝜋 is calculated in the Z plane.

The pairs are always double-counted. Additionally, if the smallest bin is 0.0 for an autocorrelation, then the self-pairs
will be counted.

from Corrfunc.theory.DDrppi import DDrppi
results_DDrppi = DDrppi(autocorr, nthreads, pimax, rbins, X, Y, Z, boxsize=boxsize)

Calculating 2-D pair-counts (Corrfunc.theory.DDsmu)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The calculation can be either auto or cross-
correlation, and with or without periodic boundaries. The spatial separation, 𝑠 is calculated in 3-D while 𝑚𝑢 is the
cosine of angle to the line-of-sight and is calculated assuming that the Z-axis is the line-of-sight.

s = v1 − v2,

𝜇 =
(𝑧1 − 𝑧2)

‖s‖

1.2. Getting started with Corrfunc 7



Corrfunc Documentation, Release 2.3.1

where, v1 := (𝑥1, 𝑦1, 𝑧1) and v2 := (𝑥2, 𝑦2, 𝑧2) are the vectors for the two points under consideration, and, ‖s‖ =√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

The pairs are always double-counted. Additionally, if the smallest bin is 0.0 for an autocorrelation, then the self-pairs
will be counted.

from Corrfunc.theory.DDsmu import DDsmu
results_DDsmu = DDsmu(autocorr, nthreads, rbins, mu_max, nmu_bins, X, Y, Z,
→˓boxsize=boxsize)

Calculating the Counts-in-Cells (Corrfunc.theory.vpf)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for counts-in-cells is the Void Probability
Function – the probability that a sphere of a certain size contains zero galaxies.

from Corrfunc.theory.vpf import vpf

# Maximum radius of the sphere in Mpc/h
rmax = 10.0

# Number of bins to cover up to rmax
nbins = 10

# Number of random spheres to place
nspheres = 10000

# Max number of galaxies in sphere (must be >=1)
numpN = 6

# Random number seed (used for choosing sphere centres)
seed = 42

results_vpf = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z)

Calculating clustering statistics in mock catalogs

In order to calculate clustering statistics in mock catalogs, the galaxy positions are assumed to be specified as on-sky
(Right Ascension, Declination, and speed of light * redshift). The following code section sets
up the default arrays and parameters for the actual clustering calculations:

import numpy as np
import Corrfunc
from os.path import dirname, abspath, join as pjoin
from Corrfunc.io import read_catalog

# Mock catalog (SDSS-North) supplied with Corrfunc
mock_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/",
→˓"Mr19_mock_northonly.rdcz.ff")
RA, DEC, CZ = read_catalog(mock_catalog)

# Randoms catalog (SDSS-North) supplied with Corrfunc
randoms_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/",
→˓"Mr19_randoms_northonly.rdcz.ff")
RAND_RA, RAND_DEC, RAND_CZ = read_catalog(randoms_catalog)

(continues on next page)

8 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

# Number of threads to use
nthreads = 2

# Specify cosmology (1->LasDamas, 2->Planck)
cosmology = 1

# Create the bins array
rmin = 0.1
rmax = 20.0
nbins = 20
rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

# Specify the distance to integrate along line of sight
pimax = 40.0

# Specify the max. of the cosine of the angle to the LOS
# for DD(s, mu)
mu_max = 1.0

# Specify the number of linear bins in `mu`
nmu_bins = 20

# Specify that an autocorrelation is wanted
autocorr = 1

Calculating 2-D pair counts (Corrfunc.mocks.DDrppi_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are expected to be Right Ascension,
Declination and CZ (speed of light times redshift, in Mpc/h). Cosmology has to be specified since CZ needs to
be converted into co-moving distance. If you want to calculate in arbitrary cosmology, then convert CZ into co-moving
distance, and then pass the converted array while setting the option is_comoving_dist=True. The projected and
line of sight separations are calculated using the following equations from Zehavi et al. 2002

s = v1 − v2,

l =
1

2
(v1 + v2) ,

𝜋 = (s · l) /‖l‖,
𝑟2𝑝 = s · s− 𝜋2

where, v1 := (𝑥1, 𝑦1, 𝑧1) and v2 := (𝑥2, 𝑦2, 𝑧2) are the vectors for the two points under consideration, and, ‖s‖ =√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2.

Here is the python code to call Corrfunc.mocks.DDrppi_mocks:

from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
results_DDrppi_mocks = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, rbins, RA,
→˓DEC, CZ)

Calculating 2-D pair counts (Corrfunc.mocks.DDsmu_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are expected to be Right Ascension,
Declination and CZ (speed of light times redshift, in Mpc/h). Cosmology has to be specified since CZ needs to

1.2. Getting started with Corrfunc 9

http://adsabs.harvard.edu/abs/2002ApJ...571..172Z


Corrfunc Documentation, Release 2.3.1

be converted into co-moving distance. If you want to calculate in arbitrary cosmology, then convert CZ into co-moving
distance, and then pass the converted array while setting the option is_comoving_dist=True. The projected and
line of sight separations are calculated using the following equations from Zehavi et al. 2002

s = v1 − v2,

l =
1

2
(v1 + v2) ,

𝜇 = (s · l) / (‖l‖‖s‖)

where, v1 := (𝑥1, 𝑦1, 𝑧1) and v2 := (𝑥2, 𝑦2, 𝑧2) are the vectors for the two points under consideration, and, ‖s‖ =√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

Here is the python code to call Corrfunc.mocks.DDsmu_mocks:

from Corrfunc.mocks.DDsmu_mocks import DDsmu_mocks
results_DDsmu_mocks = DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins,
→˓rbins, RA, DEC, CZ)

Calculating angular pair-counts (Corrfunc.mocks.DDtheta_mocks)

Corrfunc can compute angular pair counts for mock catalogs. The input positions are expected to be Right
Ascension and Declination. Since all calculations are in angular space, cosmology is not required.

from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
results_DDtheta_mocks = DDtheta_mocks(autocorr, nthreads, rbins, RA, DEC)

Calculating the Counts-in-Cells (Corrfunc.mocks.vpf_mocks)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for counts-in-cells is the Void Probability
Function – the probability that a sphere of a certain size contains zero galaxies.

from Corrfunc.mocks.vpf_mocks import vpf_mocks

# Maximum radius of the sphere in Mpc/h
rmax = 10.0

# Number of bins to cover up to rmax
nbins = 10

# Number of random spheres to place
nspheres = 10000

# Max number of galaxies in sphere (must be >=1)
numpN = 6

# Minimum number of random points needed in a ``rmax`` sphere
# such that it is considered to be entirely within the mock
# footprint. Does not matter in this case, since we already
# have the centers for the fully enclosed spheres
threshold_ngb = 1

# File with sphere centers (centers such that spheres with size
# rmax=10 Mpc/h are completely inside the survey)
centers_file = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/",
→˓"Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")

(continues on next page)

10 Chapter 1. Overview of Corrfunc

http://adsabs.harvard.edu/abs/2002ApJ...571..172Z


Corrfunc Documentation, Release 2.3.1

(continued from previous page)

results_vpf_mocks = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_
→˓file, cosmology, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ)

See the complete reference here Corrfunc.

Using the static library interface in Corrfunc

This guide assumes that you already followed the Package Installation section of the documentation to get the package
and its dependencies set up on your machine. This guide also assumes some familiarity with C coding.

This concepts in this guide are implemented in the files theory/examples/run_correlations.c and
mocks/examples/run_correlations_mocks.c for simulations and mock catalogs respectively.

The basic principle of using the static libraries has the following steps:

• Include the appropriate header to get the correct function signature (at compile time)

• In your code, include call with clustering function with appropriate parameters

• Compile your code with -I </path/to/Corrfunc/include> flags. If you have installed Corrfunc
via pip, then use os.path.join(os.path.dirname(Corrfunc.__file__), ../include/)
as the include header.

• Link your code with the appropriate static library. Look in the examples/Makefile for the linker flags.

• Run your code

Worked out example C code for clustering statistics in simulation boxes

Common setup code for the simulation C routines

In this code section, we will setup the arrays and the overall common inputs required by the C static libraries.

#include "io.h"

const char file[] = {"theory/tests/data/gals_Mr19.ff"};
const char fileformat[] = {"f"};
const char binfile[] = {"theory/tests/bins"};
const double boxsize=420.0;
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;

double *x1=NULL, *y1=NULL, *z1=NULL, *x2=NULL, *y2=NULL, *z2=NULL;

const int64_t ND1 = read_positions(file,fileformat,sizeof(*x1),3, &x1, &y1, &z1);
x2 = x1;
y2 = y1;
z2 = z1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose = 1;
options.need_avg_sep = 1;

(continues on next page)

1.2. Getting started with Corrfunc 11



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

options.periodic = 1;
options.float_type = sizeof(*x1);

Calculating 2-D projected auto-correlation (theory/wp/libcountpairs_wp.a)

Corrfunc can directly compute the projected auto-correlation function, 𝑤𝑝(𝑟𝑝). This calculation sets periodic boundary
conditions. Randoms are calculated analytically based on the supplied boxsize. The projected separation, 𝑟𝑝 is calcu-
lated in the X-Y plane while the line-of-sight separation, 𝜋 is calculated in the Z plane. Only pairs with 𝜋 separation
less than 𝜋𝑚𝑎𝑥 are counted.

#include "countpairs_wp.h"

results_countpairs_wp results;
int status = countpairs_wp(ND1,x1,y1,z1,

boxsize,
nthreads,
binfile,
pimax,
&results,
&options, NULL);

if(status != EXIT_SUCCESS) {
fprintf(stderr,"Runtime error occurred while using wp static library\n");
return status;

}

double rlow=results.rupp[0];
for(int i=1;i<results.nbin;++i) {

fprintf(stdout,"%e\t%e\t%e\t%e\t%12"PRIu64" \n",
results.wp[i],results.rpavg[i],rlow,results.rupp[i],results.

→˓npairs[i]);
rlow=results.rupp[i];

}

This is the generic pattern for using all of the correlation function. Look in theory/examples/
run_correlations.c for details on how to use all of the available static libraries.

Worked out example C code for clustering statistics in mock catalogs

Corrfunc can calculate pair counts for mock catalogs. The input positions are expected to be Right Ascension,
Declination and CZ (speed of light times redshift, in Mpc/h). Cosmology has to be specified since CZ needs to
be converted into co-moving distance. If you want to calculate in arbitrary cosmology, then you have two options:

• convert CZ into co-moving distance, and then pass the converted array while setting config_option.
is_comoving_dist=1.

• Add another cosmology in utils/cosmology_params.c in the function init_cosmology. Then, re-
compile the Corrfunc.mocks and pass cosmology=integer_for_newcosmology into the relevant
functions.

Common setup code for the mocks C routines

In this code section, we will setup the arrays and the overall common inputs required by the C static libraries.

12 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

#include "io.h" //for read_positions function

const char file[] = {"mocks/tests/data/Mr19_mock_northonly.rdcz.dat"};
const char fileformat[] = {"a"}; // ascii format
const char binfile[] = {"mocks/tests/bins"};
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;
const int cosmology=1; // 1->LasDamas cosmology, 2->Planck

// This computes in double-precision. Change to float for computing in float
double *ra1=NULL, *dec1=NULL, *cz1=NULL, *ra2=NULL, *dec2=NULL, *cz2=NULL;

//Read-in the data
const int64_t ND1 = read_positions(file,fileformat,sizeof(*ra1),3, &ra1, &dec1, &cz1);

ra2 = ra1;
dec2 = dec1;
cz2 = cz1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose=1;
options.periodic=0;
options.need_avg_sep=1;
options.float_type = sizeof(*ra1);

Calculating 2-D pair counts (mocks/DDrppi_mocks/libcountpairs_rp_pi_mocks.a)

Here is a code snippet demonstrating how to calculate 𝐷𝐷(𝑟𝑝, 𝜋) for mock catalogs. The projected separation, 𝑟𝑝 and
line of sight separation, 𝜋 are calculated using the following equations from Zehavi et al 2002:

s = v1 − v2,

l =
1

2
(v1 + v2) ,

𝜋 = (s · l) /‖l‖,
𝑟2𝑝 = s · s− 𝜋2

where, v1 and v2 are the vectors for the two points under consideration. Here is the C code for calling
DDrppi_mocks:

#include "countpairs_rp_pi_mocks.h"

results_countpairs_mocks results;
int status = countpairs_mocks(ND1,ra1,dec1,cz1,

ND2,ra2,dec2,cz2,
nthreads,
autocorr,
binfile,
pimax,
cosmology,
&results,
&options, NULL);

const double dpi = pimax/(double)results.npibin ;

(continues on next page)

1.2. Getting started with Corrfunc 13

http://adsabs.harvard.edu/abs/2002ApJ...571..172Z


Corrfunc Documentation, Release 2.3.1

(continued from previous page)

const int npibin = results.npibin;
for(int i=1;i<results.nbin;i++) {

const double logrp = LOG10(results.rupp[i]);
for(int j=0;j<npibin;j++) {

int index = i*(npibin+1) + j;
fprintf(stdout,"%10"PRIu64" %20.8lf %20.8lf %20.8lf \n",results.

→˓npairs[index],results.rpavg[index],logrp,(j+1)*dpi);
}

}

This is the generic pattern for using all of the correlation function. Look in mocks/examples/
run_correlations_mocks.c for details on how to use all of the available static libraries.

Using the command-line interface in Corrfunc

This guide assumes that you already followed the Package Installation section of the documentation to get the package
and its dependencies set up on your machine.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the counts-in-cells. The easiest way to get help on
the command-line is by calling the executables without any input parameters. Here is the list of executables associated
with each type of clustering statistic:

Clustering Statistic Full path to executable
𝐷𝐷(𝑟) theory/DD/DD
𝐷𝐷(𝑟𝑝, 𝜋) theory/DDrppi/DDrppi
𝑤𝑝(𝑟𝑝) theory/wp/wp
𝜉(𝑟) theory/xi/xi
𝑝𝑁(𝑛) theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated command-line executables are:

Clustering Statistic Full path to executable
𝐷𝐷(𝑟𝑝, 𝜋) mocks/DDrppi_mocks/DDrppi_mocks
𝐷𝐷(𝜃) mocks/DDtheta_mocks/DDtheta_mocks
𝑝𝑁(𝑛) mocks/vpf_mocks/vpf_mocks

Cheat-sheet for all available interfaces in Corrfunc

This guide assumes that you already followed the Package Installation section of the documentation to get the package
and its dependencies set up on your machine. There are three available interfaces in Corrfunc

• Using the python extensions in Corrfunc

• Using the static library interface in Corrfunc. The static libraries have the form libcount<statistic>.a;
the corresponding header file is named count<statistic>.h.

14 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

• Using the command-line interface in Corrfunc

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the counts-in-cells. The easiest way to get help on
the command-line is by calling the executables without any input parameters. Here is the list of executables associated
with each type of clustering statistic:

Clustering
Statistic

Python Interface Static library Command-line (exe-
cutable name)

𝜉(𝑟) Corrfunc.theory.
DD

theory/DD/libcountpairs.a theory/DD/DD

𝜉(𝑟𝑝, 𝜋) Corrfunc.theory.
DDrppi

theory/DDrppi/
libcountpairs_rp_pi.a

theory/DDrppi/
DDrppi

𝜉(𝑠, 𝜇) Corrfunc.theory.
DDsmu

theory/DDsmu/
libcountpairs_s_mu.a

theory/DDsmu/DDsmu

𝑤𝑝(𝑟𝑝) Corrfunc.theory.
wp

theory/wp/
libcountpairs_wp.a

theory/wp/wp

𝜉(𝑟) Corrfunc.theory.
xi

theory/xi/
libcountpairs_xi.a

theory/xi/xi

𝑝𝑁(𝑛) Corrfunc.theory.
vpf

theory/vpf/
libcountspheres.a

theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated command-line executables are:

Clustering
Statistic

Python Interface Static library Command-line (exe-
cutable name)

𝜉(𝑟𝑝, 𝜋) Corrfunc.mocks.
DDrppi_mocks

mocks/DDrppi_mocks/
libcountpairs_rp_pi_mocks.
a

mocks/
DDrppi_mocks/
DDrppi_mocks

𝜉(𝑠, 𝜇) Corrfunc.mocks.
DDsmu_mocks

mocks/DDsmu_mocks/
libcountpairs_s_mu_mocks.a

mocks/DDsmu_mocks/
DDsmu_mocks

𝜔(𝜃) Corrfunc.mocks.
DDtheta_mocks

mocks/DDtheta_mocks/
libcountpairs_theta_mocks.
a

mocks/
DDtheta_mocks/
DDtheta_mocks

𝑝𝑁(𝑛) Corrfunc.mocks.
vpf_mocks

mocks/vpf_mocks/
libcountspheres_mocks

mocks/vpf_mocks/
vpf_mocks

If you are not sure which correlation function to use, then please also see Which correlation function to use?.

1.3 Typical Tasks for Computing Correlation Functions

Here we present docstrings of the most commonly used functions and classes grouped together by functionality. Many
docstrings contain example code to demonstrate basic usage. For documentation of functions not listed here, see
Corrfunc.

1.3. Typical Tasks for Computing Correlation Functions 15



Corrfunc Documentation, Release 2.3.1

1.3.1 Reading input data

Reading Catalogs for Corrfunc

All of the Corrfunc routines require some sort of position arrays, X/Y/Z, as input. These arrays are expected to
be 1-D arrays of type np.array. If you already have have the required numpy arrays, then you can just pass them
straight to Corrfunc. If you need to read the arrays in from disk, then read on. For the command-line interface, the
input files can only be in ASCII or fast-food format (for description of fast-food binaries, see Fast-food binary format).

Fast-food binary format

The fast-food format is a fortran binary format – all fields are surrounded with 4 bytes padding. These value of these
padding bytes is the number of bytes of data contained in between the padding bytes. For example, to write out 20
bytes of data in a fast-food file format would require a total of 4+20+4=28 bytes. The first and last 4 bytes of
the file will contain the value 20 – showing that 20 bytes of real data are contained in between the two paddings.

The fast-food file consists of a header:

int idat[5];
float fdat[9];
float znow;

For the purposes of these correlation function codes, the only useful quantity is idat[1] which contains N – the
number of particles in the file. The rest can simply filled with 0.

After this header, the actual X/Y/Z values are stored. The first 4 bytes after the header contains 4*N for float precision
or 8*N for double precision where N=idat[1], is the number of particles in the file. After all of the X values there
will be another 4 bytes containing 4*N or 8*N.

Note: Even when the X/Y/Z arrays are written out in double-precision, the padding is still 4 bytes. The blocks for
Y/Z similarly follow after the X block.

Reading from ASCII files

This is the most straight forward way – you need an ASCII file with columns X/Y/Z (white-space separated).

Using numpy.genfromtxt

import numpy as np
fname = "myfile_containing_xyz_columns.dat"

# For double precision calculations
dtype = np.float ## change to np.float32 for single precision

X, Y, Z = np.genfromtxt(fname, dtype=dtype, unpack=True)

Note: Corrfunc.read_catalog uses this exact code-snippet to read in ASCII files in python.

16 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

Reading from fast-food files

If you are using the command-line interface, then the code will have to read the arrays from files. While Corrfunc
natively supports both ASCII and fast-food formats (for description of fast-food binaries, see Fast-food binary format),
the following python utility is intended to read both these types of files.

Using utility: Corrfunc.io.read_catalog

Corrfunc.io.read_catalog can directly read ASCII files or fast-food binary files.

from Corrfunc.io import read_catalog

# Read the standard theory catalog (on a box)
# supplied with Corrfunc
X, Y, Z = read_catalog()

# Read some other format -> have to specify
# filename
fname = "myfile_containing_xyz_columns.dat"
X, Y, Z = read_catalog(fname)

1.3.2 Creating a file with bins for the clustering statistics

Specifying the separation bins in Corrfunc

All of the python extensions for Corrfunc accept either a filename or an array for specifying the 𝑟𝑝 or 𝜃.

Manually creating a file with arbitrary bins

This manual method lets you specify generic bins as long as the upper-edge of one bin is the same as the lower-edge
of the next (i.e., continuous bins). The bins themselves can have arbitrary widths, and the smallest bin can start from
0.0.

• Open a text editor with a new file

• Add two columns per bin you want, the first column should be low-edge of the bin while the second column
should be the high-edge of the bin. Like so:

0.10 0.15

• Now add as many such lines as the number of bins you want. Here is a valid example:

0.10 0.15
0.15 0.50
0.50 5.00

This example specifies 3 bins, with the individual bin limits specified on each line. Notice that the width of each bin
can be independently specified (but the bins do have to be continuous)

Note: Make sure that the bins are in increasing order – smallest bin first, then the next smallest bin and so on up to
the largest bin.

1.3. Typical Tasks for Computing Correlation Functions 17



Corrfunc Documentation, Release 2.3.1

Specifying bins as an array

You can specify the bins using numpy.linspace or numpy.logspace.

import numpy as np
rmin = 0.1
rmax = 10.0
nbins = 20
rbins = np.linspace(rmin, rmax, nbins + 1)
log_rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

1.3.3 Choosing the correlation function

Which correlation function to use?

Corrfunc has a variety of correlation functions to cover a broad range of Science applications. The basic distinction
occurs if the input particles are directly from a simulation or from an observational survey (or equivalently, a simulation
that has been processed to look like a survey). For simulation data, referred throughout as theory, the assumption is that
the particle positions are Cartesian, co-moving XYZ. For survey data, referred throughout as mocks, the assumption is
that particle positions are Right Ascension (0 – 360 deg), Declination (-90 – 90 deg) and CZ (speed of light multiplied
by the redshift). Depending on the exact type of data, and the desired correlation function you want, the following
table should help you figure out which code you should use.

Input
Data

Periodic Particle
domain

Desired correlation
function

Returns Python code

X, Y, Z True Cube (box) wp(𝑟𝑝) 2-D Projected Cor-
relation

Corrfunc.theory.wp

𝜉(𝑟) 3-D Real-space
Correlation

Corrfunc.theory.xi

X, Y, Z True or
False

Arbitrary 𝜉(𝑟) Pair-counts in 3-D
real-space

Corrfunc.theory.DD

𝜉(𝑟𝑝, 𝜋) Pair-counts in 2-D Corrfunc.theory.
DDrppi

𝜉(𝑠, 𝜇) Pair-counts in 2-D Corrfunc.theory.
DDsmu

ra, dec,
cz

False Arbitrary 𝜉(𝑟𝑝, 𝜋) Pair-counts in 2-D Corrfunc.mocks.
DDrppi_mocks

𝜉(𝑠, 𝜇) Pair-counts in 2-D Corrfunc.mocks.
DDsmu_mocks

ra, dec False Arbitrary 𝜔(𝜃) Pair-counts in angu-
lar space

Corrfunc.mocks.
DDtheta_mocks

In all cases where only pair-counts are returned (e.g., all of the mocks routines), you will need to compute at least
an additional RR term. Please see Corrfunc.utils.convert_3d_counts_to_cf to convert 3-D pair-
counts (or angular pair counts) into a correlation function. For 2-D pair-counts, please use Corrfunc.utils.
convert_rp_pi_counts_to_wp to convert into a projected correlation function. If you want to compute the
𝜉(𝑟𝑝, 𝜋) from the 2-D pair-counts, then simply call Corrfunc.utils.convert_3d_counts_to_cf with the
arrays.

Also, see Using the command-line interface in Corrfunc for a detailed list of the clustering statistics and the various
available API interfaces.

18 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

1.3.4 Calculating Correlation Functions on Simulations

Converting 3D pair counts into a correlation function

3D pair counts can be converted into a correlation function by using the helper function Corrfunc.utils.
convert_3d_counts_to_cf. First, we have to compute the relevant pair counts using the python wrapper
Corrfunc.theory.DD

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> from Corrfunc.theory.DD import DD
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> # Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> nthreads = 2

# Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)

# Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note that +1 to nbins

# Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... periodic=False, verbose=True)

# Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

# Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DD(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

# All the pair counts are done, get the correlation function
>>> cf = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

Converting (𝑟𝑝, 𝜋) pairs into a projected correlation function

Pair counts in (𝑟𝑝, 𝜋) can be converted into a projected correlation function by using the helper function Corrfunc.
utils.convert_rp_pi_counts_to_wp.

1.3. Typical Tasks for Computing Correlation Functions 19



Corrfunc Documentation, Release 2.3.1

>>> import numpy as np
>>> from Corrfunc.theory import DDrppi
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

# Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0

# Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 2
>>> pimax = 40.0

# Setup the bins
>>> nrpbins = 10
>>> bins = np.linspace(0.1, 10.0, nrpbins + 1)

# Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi(autocorr, nthreads, bins, X, Y, Z,
... periodic=False, verbose=True)

# Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi(autocorr, nthreads, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

# Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

# All the pair counts are done, get the correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nrpbins, pimax)

See the complete reference here Corrfunc.

Directly Computing 𝜉(𝑟) and 𝑤𝑝(𝑟𝑝)

For a periodic cosmological box, the 3-d auto correlation, 𝜉(𝑟), and the projected auto correlation function, 𝑤𝑝(𝑟𝑝),
can be directly computed using the Natural Estimator. The relevant python wrappers are present in Corrfunc.
theory.xi and Corrfunc.theory.wp. See Notes on the Random-Random Term in Autocorrelations for details
on how the Natural Estimator is computed.

>>> import numpy as np
>>> from Corrfunc.theory.wp import wp
>>> from Corrfunc.theory.xi import xi
>>> from Corrfunc.io import read_catalog

(continues on next page)

20 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> X, Y, Z = read_catalog()
>>> boxsize = 420.0
>>> nthreads = 2
>>> pimax = 40.0
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # Note the + 1 to nbins
>>> wp_counts = wp(boxsize, pimax, nthreads, bins, X, Y, Z)
>>> xi_counts = xi(boxsize, nthreads, bins, X, Y, Z)

See the complete reference here Corrfunc.

Detailed API for Clustering Statistics on Simulations

All of these can be imported from Corrfunc.theory . See the complete reference here Corrfunc.

Clustering in 3-D

• Pair counts for (auto or cross) correlations for 𝜉(𝑟) – Corrfunc.theory.DD

• Auto-correlation on periodic, cosmological boxes, 𝜉(𝑟), – Corrfunc.theory.xi

Clustering in 2-D

• Pair counts (auto or cross) correlations for 𝜉(𝑟𝑝, 𝜋) – Corrfunc.theory.DDrppi

• Pair counts (auto or cross) correlations for 𝜉(𝑠, 𝜇) – Corrfunc.theory.DDsmu

• Projected auto-correlation function, 𝑤𝑝(𝑟𝑝) – Corrfunc.theory.wp

Counts-in-cells

• Void Probability functions and counts-in-cells stats 𝑝𝑁(𝑟) – Corrfunc.theory.vpf

Notes on the Random-Random Term in Autocorrelations

The following discussion is adapted from this notebook by Lehman Garrison.

When computing a two-point correlation function estimator like

𝜉(𝑟) = − 1,

the term can be computed analytically if the domain is a periodic box. Often, this is done as

𝑖 = 𝑁𝑉𝑖𝜌 (1.1)

= 𝑁𝑉𝑖
𝑁

𝐿3
(1.2)

where 𝑖 is the expected number of random-random pairs in bin 𝑖, 𝑁 is the total number of points, 𝑉𝑖 is the volume (or
area if 2D) of bin 𝑖, 𝐿 is the box size, and 𝜌 is the average density in the box.

1.3. Typical Tasks for Computing Correlation Functions 21

http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2
https://lgarrison.github.io


Corrfunc Documentation, Release 2.3.1

However, using 𝜌 = 𝑁
𝐿3 is only correct for continuous fields, not sets of particles. When sitting on a particle, only

𝑁 − 1 particles are available to be in a bin at some non-zero distance. The remaining particle is the particle you’re
sitting on, which is always at distance 0. Thus, the correct expression is

𝑖 = 𝑁𝑉𝑖
𝑁 − 1

𝐿3
.

See this notebook for an empirical demonstration of this effect; specifically, that computing the density with 𝑁 − 1 is
correct, and that using 𝑁 introduces bias of order 1

𝑁 into the estimator. This is a tiny correction for large 𝑁 problems,
but important for small 𝑁 .

Any Corrfunc function that returns a clustering statistic (not just raw pair counts) implements this correction.
Currently, this includes Corrfunc.theory.xi and Corrfunc.theory.wp.

Cross-correlations of two different particle sets don’t suffer from this problem; the particle you’re sitting on is never
part of the set of particles under consideration for pair-making.

Corrfunc also allows bins of zero separation, in which “self-pairs” are included in the pair counting. 𝑖 must reflect
this by simply adding 𝑁 to any such bin.

RR in Weighted Clustering Statistics

We can extend the above discussion to weighted correlation functions in which each particle is assigned a weight, and
the pair weight is taken as the product of the particle weights (see Computing Weighted Correlation Functions).

Let 𝑤𝑗 be the weight of particle 𝑗, and 𝑊 be the sum of the weights. We will define the “unclustered” particle
distribution to be the case of 𝑁 particles uniformly distributed, where each is assigned the mean weight �̄�. We thus
have

𝑖 =

𝑁∑︁
𝑗=1

�̄�(𝑊 − �̄�)
𝑉𝑖

𝐿3
(1.3)

= (𝑊 2 − �̄�𝑊 )
𝑉𝑖

𝐿3
(1.4)

= 𝑊 2

(︂
1 − 1

𝑁

)︂
𝑉𝑖

𝐿3
.(1.5)

When the particles all have 𝑤𝑗 = 1, then 𝑊 = 𝑁 and we recover the unweighted result from above.

There are other ways to define the unclustered distribution. If we were to redistribute the particles uniformly but
preserve their individual weights, we would find

𝑖 =

𝑁∑︁
𝑗=1

𝑤𝑗(𝑊 − 𝑤𝑗)
𝑉𝑖

𝐿3
(1.6)

=

⎛⎝𝑊 2 −
𝑁∑︁
𝑗=1

𝑤2
𝑗

⎞⎠ 𝑉𝑖

𝐿3
.(1.7)

This is not what we use in Corrfunc, but this should help illuminate some of the considerations that go into defining
the “unclustered” case when writing a custom weight function (see Implementing Custom Weight Functions).

1.3.5 Calculating Correlation Functions on Mock Catalogs

Calculating the projected correlation function, 𝑤𝑝(𝑟𝑝)

2-D Pair counts can be converted into a 𝑤𝑝(𝑟𝑝) by using the helper function Corrfunc.utils.
convert_rp_pi_counts_to_wp. First, we have to compute the relevant pair counts using the python wrapper
Corrfunc.mocks.DDrppi_mocks

22 Chapter 1. Overview of Corrfunc

http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2


Corrfunc Documentation, Release 2.3.1

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_mock_northonly.rdcz.ff")

# Read the supplied galaxies on a periodic box
>>> RA, DEC, CZ = read_catalog(galaxy_catalog)
>>> N = len(RA)

# Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, rand_CZ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

# Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 20.0, nbins + 1)
>>> pimax = 40.0

>>> cosmology = 1
>>> nthreads = 2

# Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ)

# Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ,
... RA2=rand_RA, DEC2=rand_DEC, CZ2=rand_CZ)

# Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... rand_RA, rand_DEC, rand_CZ)

# All the pair counts are done, get the angular correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nbins, pimax)

See the complete reference here Corrfunc.

Calculating the angular correlation function, 𝜔(𝜃)

Angular pair counts can be converted into a 𝜔(𝜃) by using the helper function Corrfunc.utils.
convert_3d_counts_to_cf. First, we have to compute the relevant pair counts using the python wrapper

1.3. Typical Tasks for Computing Correlation Functions 23



Corrfunc Documentation, Release 2.3.1

Corrfunc.mocks.DDtheta_mocks

>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data",
... "Mr19_mock_northonly.rdcz.ff")

# Read the supplied galaxies on a periodic box
>>> RA, DEC, _ = read_catalog(galaxy_catalog)

# Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, _ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

# Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note the +1 to nbins

# Number of threads to use
>>> nthreads = 2

# Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC)

# Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC,
... RA2=rand_RA, DEC2=rand_DEC)

# Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... rand_RA, rand_DEC)

# All the pair counts are done, get the angular correlation function
>>> wtheta = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

Detailed API for Clustering Statistics on Mock Catalogs

All of these can be imported from Corrfunc.mocks. See the complete reference here Corrfunc.‘

24 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

Clustering in 2-D

• Pair counts (auto or cross) correlations for 𝜉(𝑟𝑝, 𝜋) – Corrfunc.mocks.DDrppi_mocks

• Pair counts (auto or cross) correlations for 𝜉(𝑠, 𝜇) – Corrfunc.mocks.DDsmu_mocks

Angular clustering

• Pair counts (auto or cross) correlations for 𝜔(𝜃) – Corrfunc.mocks.DDtheta_mocks

Counts-in-cells

• Void Probability functions and counts-in-cells stats 𝑝𝑁(𝑟) – Corrfunc.mocks.vpf_mocks

1.3.6 Weighted Correlation Functions

Computing Weighted Correlation Functions

Every clustering statistic in Corrfunc accepts an array of weights that can be used to compute weighted corre-
lation functions. The API reference for each clustering statistic (Corrfunc.theory.xi, Corrfunc.mocks.
DDrppi_mocks, etc.) contains examples of how to do this. The interface is standard across functions: the inputs
are a weights array and a weight_type string that specifies how to use the “point weights” to compute a “pair
weight”. Currently, the only supported weight_type is pair_product, in which the pair weight is the product
of the point weights (but see Implementing Custom Weight Functions for how to write your own function).

If weight_type and weights (or weights1 and weights2 for cross-correlations) are given, the mean pair
weight in a separation bin will be given in the weightavg field of the output. This field is 0.0 if weights are disabled.

Pair counts (i.e. the npairs field in the results array) are never affected by weights. For theory functions
like Corrfunc.theory.xi and Corrfunc.theory.wp that actually return a clustering statistic, the statistic
is weighted. For pair_product, the distribution used to compute the expected bin weight from an unclustered
particle set (the RR term) is taken to be a spatially uniform particle set where every particle has the mean weight. See
RR in Weighted Clustering Statistics for more discussion.

Running with weights incurrs a modest performance hit (around 20%, similar to enabling ravg). Weights are sup-
ported for all instruction sets (SSE, AVX, and fallback).

Consider the following simple example adapted from the Corrfunc.theory.xi docstring, in which we assign a
weight of 0.5 to every particle and get the expected average pair weight of 0.25 (last column of the output). Note that
xi (fourth column) is also weighted, but the case of uniform weights is equivalent to the unweighted case.

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.xi import xi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)

(continues on next page)

1.3. Typical Tasks for Computing Correlation Functions 25



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.full_like(X, 0.5)
>>> results = xi(boxsize, nthreads, binfile, X, Y, Z, weights=weights, weight_type=
→˓'pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}
→˓"
... .format(r['rmin'], r['rmax'],
... r['ravg'], r['xi'], r['npairs'], r['weightavg']))
...

0.167536 0.238755 0.226592 -0.205733 4 0.250000
0.238755 0.340251 0.289277 -0.176729 12 0.250000
0.340251 0.484892 0.426819 -0.051829 40 0.250000
0.484892 0.691021 0.596187 -0.131853 106 0.250000
0.691021 0.984777 0.850100 -0.049207 336 0.250000
0.984777 1.403410 1.225112 0.028543 1052 0.250000
1.403410 2.000000 1.737153 0.011403 2994 0.250000
2.000000 2.850200 2.474588 0.005405 8614 0.250000
2.850200 4.061840 3.532018 -0.014098 24448 0.250000
4.061840 5.788530 5.022241 -0.010784 70996 0.250000
5.788530 8.249250 7.160648 -0.001588 207392 0.250000
8.249250 11.756000 10.207213 -0.000323 601002 0.250000

11.756000 16.753600 14.541171 0.000007 1740084 0.250000
16.753600 23.875500 20.728773 -0.001595 5028058 0.250000

Implementing Custom Weight Functions

Corrfunc supports custom weight functions. On this page we describe the recommended procedure for writing your
own. When in doubt, follow the example of pair_product.

First, see Computing Weighted Correlation Functions for basic usage of Corrfunc’s weight features.

The steps are:

1. Add a type to the weight_method_t enum in utils/defs.h (something like
MY_WEIGHT_SCHEME=1).

2. Determine how many weights per particle your scheme needs, and add a case to the switch-
case block in get_num_weights_by_method() in utils/defs.h. Corrfunc supports up to
MAX_NUM_WEIGHTS=10 weights per particle; most schemes will simply need 1. To provide multiple weights
per particle via the Python interface, simply pass a weights array of shape (N_WEIGHTS_PER_PARTICLE,
N_PARTICLES).

3. Add an if statement that maps a string name (like “my_weight_scheme”) to the weight_method_t (which
you created above) in get_weight_method_by_name() in utils/defs.h.

4. Write a function in utils/weight_functions.h.src that returns the weight for a particle pair, given the
weights for the two particles. The weights for each particle are packed in a const pair_struct_DOUBLE
struct, which also contains the pair separation. You must write one function for every instruction set you wish
to support. This can be quite easy for simple weight schemes; the four functions for pair_product are:

/*
* The pair weight is the product of the particle weights

*/
static inline DOUBLE pair_product_DOUBLE(const pair_struct_DOUBLE *pair){

return pair->weights0[0].d*pair->weights1[0].d;

(continues on next page)

26 Chapter 1. Overview of Corrfunc



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

}

#ifdef __AVX512F__
static inline AVX512_FLOATS avx512_pair_product_DOUBLE(const pair_struct_DOUBLE *pair)
→˓{

return AVX512_MULTIPLY_FLOATS(pair->weights0[0].a512, pair->weights1[0].a512);
}
#endif

#ifdef __AVX__
static inline AVX_FLOATS avx_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){

return AVX_MULTIPLY_FLOATS(pair->weights0[0].a, pair->weights1[0].a);
}
#endif

#ifdef __SSE4_2__
static inline SSE_FLOATS sse_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){

return SSE_MULTIPLY_FLOATS(pair->weights0[0].s, pair->weights1[0].s);
}
#endif

See utils/avx512_calls.h, utils/avx_calls.h and utils/sse_calls.h for the lists of available
vector instructions.

5. For each function you wrote in the last step, add a case to the switch-case block in the appropriate dispatch
function in utils/weight_functions.h.src. If you wrote a weighting function for all four instruction
sets, then you’ll need to add the corresponding function to get_weight_func_by_method_DOUBLE(),
get_avx512_weight_func_by_method_DOUBLE, get_avx_weight_func_by_method_DOUBLE(),
and get_sse_weight_func_by_method_DOUBLE().

6. Done! Your weight scheme should now be accessible through the Python and C interfaces via the name
(“my_weight_scheme”) that you specified above. The output will be accessible in the weightavg field of
the results array.

Pair counts (i.e. the npairs field in the results array) are never affected by weights. For theory functions
like Corrfunc.theory.xi and Corrfunc.theory.wp that actually return a clustering statistic, the statis-
tic is weighted. For pair_product, the random distribution used to compute the expected bin weight from an
unclustered particle set (the RR term) is taken to be a spatially uniform particle set where every particle has the
mean weight. See RR in Weighted Clustering Statistics for more discussion. This behavior (automatically returning
weighted clustering statistics) is only implemented for pair_product, since that is the only weighting method
for which we know the desired equivalent random distribution. Custom weighting methods can implement simi-
lar behavior by modifying countpairs_xi_DOUBLE() in theory/xi/countpairs_xi_impl.c.src and
countpairs_wp_DOUBLE() in theory/wp/countpairs_wp_impl.c.src.

1.4 Developer documentation

The developer documentation contains guidlines for how to stay up-to-date on Corrfunc development, submit bug
reports and contribute to the Corrfunc code base.

1.4.1 License and Citation Information

1.4. Developer documentation 27



Corrfunc Documentation, Release 2.3.1

Citing Corrfunc

If you use Corrfunc for research, please cite using the MNRAS code paper with the following bibtex entry:

@ARTICLE{2020MNRAS.491.3022S,
author = {{Sinha}, Manodeep and {Garrison}, Lehman H.},
title = "{CORRFUNC - a suite of blazing fast correlation functions on
the CPU}",
journal = {\mnras},
keywords = {methods: numerical, galaxies: general, galaxies:
haloes, dark matter, large-scale structure of Universe, cosmology:
theory},
year = "2020",
month = "Jan",
volume = {491},
number = {2},
pages = {3022-3041},
doi = {10.1093/mnras/stz3157},
adsurl =
{https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3022S},
adsnote = {Provided by the SAO/NASA
Astrophysics Data System}

}

The MNRAS paper (also on arXiv:1911.03545) targets Corrfunc v2.0.0. If you are using Corrfunc v2.3.0
or later, and you benefit from the enhanced vectorised kernels, then please additionally cite this paper:

@InProceedings{10.1007/978-981-13-7729-7_1,
author="Sinha, Manodeep and Garrison, Lehman",
editor="Majumdar, Amit and Arora, Ritu",
title="CORRFUNC: Blazing Fast Correlation Functions with AVX512F SIMD Intrinsics",
booktitle="Software Challenges to Exascale Computing",
year="2019",
publisher="Springer Singapore",
address="Singapore",
pages="3--20",
isbn="978-981-13-7729-7",
url={https://doi.org/10.1007/978-981-13-7729-7_1}

}

Corrfunc License

Corrfunc comes with a MIT LICENSE - see the LICENSE file.

Copyright (C) 2014 Manodeep Sinha (manodeep@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

28 Chapter 1. Overview of Corrfunc

https://arxiv.org/abs/1911.03545
mailto:manodeep@gmail.com


Corrfunc Documentation, Release 2.3.1

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.4.2 Package contributors

Corrfunc project coordinator

• Manodeep Sinha

Lead developers

• Manodeep Sinha

Core package contributors

• Manodeep Sinha (@manodeep)

• Lehman Garrison (@lgarrison)

• Nick Hand (@nickhand)

Other credits

• Corrfunc contains code from Agner Fog, GeometricTools, and the package SGLIB. The LICENSE for these
external files remains with the original author of the package.

• The entirety of the docs for Corrfunc is derived from halotools. I know, first-hand, how much of an effort it was
for the developers of halotools to generate all of this documentation. Having such a template made creating the
docs for Corrfunc a lot easier process.

• The API generation script for Corrfunc was lifted directly out of the repo bccp/nbodykit/.

1.4.3 Submitting a Bug Report

If you find or just suspect buggy behavior in Corrfunc, please raise an issue on GitHub. Navigate to the Corrfunc
Issues page, create a new issue with a description of the problem and the full Traceback (if applicable), and attach a
bug label to the issue.

1.4.4 Staying Up to Date

If you would like to receive notifications of new code releases, sign up for the google group

https://groups.google.com/forum/#!forum/Corrfunc

Feel free to ask questions about the code on the group. However, note that all exchanges on the groups are subject to
Astropy Community Code of Conduct, which is basically, “Be nice!”. If you are unsure about some technical aspect
of the code, then feel free to email the author (Manodeep Sinha).

1.4. Developer documentation 29

https://agner.org
http://www.geometrictools.com/
http://sglib.sourceforge.net/
https://github.com/astropy/halotools
https://github.com/bccp/nbodykit/
https://github.com/manodeep/Corrfunc/issues
https://github.com/manodeep/Corrfunc/issues
https://groups.google.com/forum/#!forum/Corrfunc
http://www.astropy.org/about.html#codeofconduct
mailto:manodeep@gmail.com


Corrfunc Documentation, Release 2.3.1

1.4.5 Contributing to Corrfunc

Corrfunc is written in a very modular fashion with minimal interaction between the various calculations. The algorithm
presented in Corrfunc is applicable to a broad-range of astrophysical problems, viz., any situation that requires looking
at all objects around a target and performing some analysis with this group of objects.

Here are the basic steps to get your statistic into the Corrfunc package:

• Fork the repo and add your statistic

• Add exhaustive tests. The output of your statistic should exactly agree with a brute-force implementation (under
double-precision). Look at test_periodic.c and test_nonperiodic.c under theory/tests/ for
tests on simulation volumes. For mock catalogs, look at mocks/tests/tests_mocks.c.

• Add a python extension for the new statistic. This extension should reside in file theory/
python_bindings/_countpairs.c or mocks/python_bindings/_countpairs_mocks.c
for statistics relevant for simulations and mocks respectively. It is preferred to have the extension documented
but not necessary.

• Add a call to this new extension in the python_bindings/call_correlation_functions*.py
script.

Note: Different from corresponding script in Corrfunc/ directory.

• Add a python wrapper for the previous python extension. This wrapper should exist in Corrfunc/theory/
or Corrfunc/mocks/. Wrapper must have inline API docs.

• Add the new wrapper to __all__ in __init__.py within the relevant directory.

• Add an example call to this wrapper in Corrfunc/call_correlation_functions.py or
Corrfunc/call_correlation_functions_mocks.py for simulations and mocks respectively.

Note: Different from corresponding script in python_bindings directory.

• Add the new wrapper to the API docs within ROOT_DIR/docs/source/theory_functions.rst or
ROOT_DIR/docs/source/mocks_functions.rst.

• Add to the contributors list under ROOT_DIR/docs/source/development/contributors.rst.

• Submit pull request

Note: Please feel free to email the author or the Corrfunc Google Groups if you need help at any stage.

Corrfunc Design

All of the algorithms in Corrfunc have the following components:

• Reading in data. Relevant routines are in the io/ directory with a mapping within io.c to handle the file
format

• Creating the 3-D lattice structure. Relevant routines are in the utils/gridlink_impl.c.src and
utils/gridlink_mocks.c.src. This lattice grids up the particle distribution on cell-sizes of rmax
(the maximum search radius).

30 Chapter 1. Overview of Corrfunc

mailto:manodeep@gmail.com
https://groups.google.com/forum/#!forum/corrfunc


Corrfunc Documentation, Release 2.3.1

Note: The current lattice code duplicates the particle memory. If you need a lattice that does not duplicate the
particle memory, then please email the author. Relevant code existed in Corrfunc but has been removed in the current
incarnation.

• Setting up the OpenMP sections such that threads have local copies of histogram arrays. If OpenMP is not
enabled, then this section should not produce any compilable code.

• Looping over all cells in the 3-D lattice and then looping over all neighbouring cells for each cell.

• For a pair of cells, hand over the two sets of arrays into a specialized kernel (count*kernel.c.src) for
computing pairs.

• Aggregate the results, if OpenMP was enabled.

Directory and file layout

• Codes that compute statistics on simulation volumes (Cartesian XYZ as input) go into a separate directory within
theory

• Codes that compute statistics on mock catalogs (RA, DEC [CZ]) go into a separate directory within mocks

• Public API in a count*.h file. Corresponding C file simply dispatches to appropriate floating point imple-
mentation.

• Floating point implmentation in file count*_impl.c.src. This file is processed via sed to generate both
single and double precision implementations.

• A kernel named count*kernels.c.src containing implementations for counting pairs on two sets of ar-
rays. This kernel file is also preprocessed to produce both the single and double precision kernels.

• Tests go within tests directory under theory or mocks, as appropriate. For simulation routines, tests with
and without periodic boundaries go into test_periodic.c and test_nonperiodic.c

• C code to generate the python extensions goes under python_bindings directory into the file
_countpairs*.c

• Each python extension has a python wrapper within Corrfunc directory

Coding Guidelines

C guidelines

Code contents

• Always check for error conditions when calling a function

• If an error condition occurs when making an kernel/external library call, first call perror and then return the
error status. If calling a wrapper from within Corrfunc, assume that perror has already been called and simply
return the status. Clean up memory before returning status.

• Declare variables in the smallest possible scope.

• Add const qualifiers liberally

• There must not be any compiler warnings (with gcc6.0) under the given set of Warnings already enabled
within common.mk. If the warning can not be avoided because of logic issues, then suppress the warning but

1.4. Developer documentation 31

mailto:manodeep@gmail.com


Corrfunc Documentation, Release 2.3.1

note why that suppression is required. Warnings are treated as errors on the continuous integration platform
(TRAVIS)

• Valgrind should not report any fixable memory or file leaks (memory leaks in OpenMP library, e.g., libgomp,
are fine)

Style

The coding style is loosely based on Linux Kernel Guideline. These are recommended but not strictly enforced.
However, note that if you do contribute code to Corrfunc, the style may get converted.

• Braces - Opening braces start at the same line, except for functions - Closing braces on new line - Even single
line conditionals must have opening and closing braces

• Comments - Explanatory comments on top of code segment enclosed with /**/ - Inline comments must be
single-line on the right

• Indentation is tab:=4 spaces

• Avoid typedef for structs and unions

Python guidelines

• Follow the astropy python code guide

• Docs are in numpydocs format. Follow any of the wrapper routines in Corrfunc (which are, in turn, taken
from halotools)

32 Chapter 1. Overview of Corrfunc

https://www.kernel.org/doc/Documentation/CodingStyle
http://docs.astropy.org/en/stable/development/codeguide_emacs.html
http://halotools.readthedocs.io/


CHAPTER 2

Reference

2.1 Comprehensive API reference

2.1.1 Corrfunc package

Corrfunc is a set of high-performance routines for computing clustering statistics on a distribution of points.

Corrfunc.read_text_file(filename, encoding=u’utf-8’)
Reads a file under python3 with encoding (default UTF-8). Also works under python2, without encoding. Uses
the EAFP (https://docs.python.org/2/glossary.html#term-eafp) principle.

Corrfunc.which(program, mode=1, path=None)
Mimics the Unix utility which. For python3.3+, shutil.which provides all of the required functionality. An
implementation is provided in case shutil.which does not exist.

Parameters

• program – (required) string Name of program (can be fully-qualified path as well)

• mode – (optional) integer flag bits Permissions to check for in the executable Default:
os.F_OK (file exists) | os.X_OK (executable file)

• path – (optional) string A custom path list to check against. Implementation taken from
shutil.py.

Returns A fully qualified path to program as resolved by path or user environment. Returns None
when program can not be resolved.

Corrfunc.write_text_file(filename, contents, encoding=u’utf-8’)
Writes a file under python3 with encoding (default UTF-8). Also works under python2, without encoding. Uses
the EAFP (https://docs.python.org/2/glossary.html#term-eafp) principle.

Subpackages

33

https://docs.python.org/2/glossary.html#term-eafp
https://docs.python.org/2/glossary.html#term-eafp


Corrfunc Documentation, Release 2.3.1

Corrfunc.mocks package

Wrapper for all clustering statistic calculations on galaxies in a mock catalog.

Corrfunc.mocks.DDrppi_mocks(autocorr, cosmology, nthreads, pimax, binfile, RA1,
DEC1, CZ1, weights1=None, RA2=None, DEC2=None,
CZ2=None, weights2=None, is_comoving_dist=False, ver-
bose=False, output_rpavg=False, fast_divide_and_NR_steps=0,
xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1,
max_cells_per_dim=100, copy_particles=True, en-
able_min_sep_opt=True, c_api_timer=False, isa=u’fastest’,
weight_type=None)

Calculate the 2-D pair-counts corresponding to the projected correlation function, 𝜉(𝑟𝑝, 𝜋). Pairs which are
separated by less than the rp bins (specified in binfile) in the X-Y plane, and less than pimax in the Z-
dimension are counted. The input positions are expected to be on-sky co-ordinates. This module is suitable for
calculating correlation functions for mock catalogs.

If weights are provided, the resulting pair counts are weighted. The weighting scheme depends on
weight_type.

Returns a numpy structured array containing the pair counts for the specified bins.

Note: that this module only returns pair counts and not the actual correlation function 𝜉(𝑟𝑝, 𝜋) or
𝑤𝑝(𝑟𝑝). See the utilities Corrfunc.utils.convert_3d_counts_to_cf and Corrfunc.utils.
convert_rp_pi_counts_to_wp for computing 𝜉(𝑟𝑝, 𝜋) and 𝑤𝑝(𝑟𝑝) respectively from the pair counts.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• cosmology (integer, required) – Integer choice for setting cosmology. Valid val-
ues are 1->LasDamas cosmology and 2->Planck cosmology. If you need arbitrary cos-
mology, easiest way is to convert the CZ values into co-moving distance, based on your
preferred cosmology. Set is_comoving_dist=True, to indicate that the co-moving
distance conversion has already been done.

Choices:

1. LasDamas cosmology. Ω𝑚 = 0.25, ΩΛ = 0.75

2. Planck cosmology. Ω𝑚 = 0.302, ΩΛ = 0.698

To setup a new cosmology, add an entry to the function, init_cosmology in ROOT/
utils/cosmology_params.c and re-install the entire package.

• nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP
was not enabled during library compilation.

• pimax (double) – A double-precision value for the maximum separation along the Z-
dimension.

Distances along the 𝜋 direction are binned with unit depth. For instance, if pimax=40,
then 40 bins will be created along the pi direction. Only pairs with 0 <= dz < pimax
are counted (no equality).

• binfile (string or an list/array of floats) – For string input: filename
specifying the rp bins for DDrppi_mocks. The file should contain white-space separated

34 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

values of (rpmin, rpmax) for each rp wanted. The bins need to be contiguous and sorted in
increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• RA1 (array-like, real (float/double)) – The array of Right Ascensions for
the first set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0].

Calculations are done in the precision of the supplied arrays.

• DEC1 (array-like, real (float/double)) – Array of Declinations for the first
set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix cases
where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA1.

• CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Red-
shift) values for the first set of points. Code will try to detect cases where redshifts
have been passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the co-moving distance, rather than cz.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type spec-
ifies how these weights are used; results are returned in the weightavg field. If only one of
weights1 and weights2 is specified, the other will be set to uniform weights.

• RA2 (array-like, real (float/double)) – The array of Right Ascensions for
the second set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0].

Must be of same precision type as RA1/DEC1/CZ1.

• DEC2 (array-like, real (float/double)) – Array of Declinations for the sec-
ond set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix
cases where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s
in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

• CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Red-
shift) values for the second set of points. Code will try to detect cases where redshifts
have been passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• is_comoving_dist (boolean (default false)) – Boolean flag to indicate that
cz values have already been converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

2.1. Comprehensive API reference 35



Corrfunc Documentation, Release 2.3.1

• output_rpavg (boolean (default false)) – Boolean flag to output the average
rp for each bin. Code will run slower if you set this flag.

If you are calculating in single-precision, rpavg will suffer suffer from numerical loss of
precision and can not be trusted. If you need accurate rpavg values, then pass in double
precision arrays for the particle positions.

• fast_divide_and_NR_steps (integer (default 0)) – Replaces the
division in AVX implementation with an approximate reciprocal, followed by
fast_divide_and_NR_steps of Newton-Raphson. Can improve runtime by
~15-20% on older computers. Value of 0 uses the standard division operation.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is too small relative to
the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string, case-insensitive (default fastest)) – Controls the runtime dispatch for
the instruction set to use. Possible options are: [fastest, avx512f, avx, sse42,
fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should always leave isa to
the default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional (default None)) – The type of weighting
to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [rpmin, rp-
max, rpavg, pimax, npairs, weightavg] for each radial bin specified in the binfile.
If output_ravg is not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can be used to compute
the actual 𝜉(𝑟𝑝, 𝜋) or 𝑤𝑝(𝑟𝑝) by combining with (DR, RR) counts.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

36 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> import math
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> weights = np.ones_like(X)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi
>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> autocorr = 1
>>> cosmology = 1
>>> nthreads = 2
>>> pimax = 40.0
>>> results = DDrppi_mocks(autocorr, cosmology, nthreads,
... pimax, binfile, RA, DEC, CZ,
... weights1=weights, weight_type='pair_product',
... output_rpavg=True, is_comoving_dist=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax
→˓'],
... r['rpavg'], r['pimax'], r['npairs'], r[
→˓'weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
11.359969 16.852277 14.285169 40.0 104850 1.000000
16.852277 25.000000 21.181246 1.0 274144 1.000000
16.852277 25.000000 21.190844 2.0 272876 1.000000
16.852277 25.000000 21.183321 3.0 272294 1.000000
16.852277 25.000000 21.188486 4.0 272506 1.000000
16.852277 25.000000 21.170832 5.0 272100 1.000000
16.852277 25.000000 21.165379 6.0 271788 1.000000
16.852277 25.000000 21.175246 7.0 270040 1.000000
16.852277 25.000000 21.187417 8.0 269492 1.000000
16.852277 25.000000 21.172066 9.0 269682 1.000000
16.852277 25.000000 21.182460 10.0 268266 1.000000
16.852277 25.000000 21.170594 11.0 268744 1.000000
16.852277 25.000000 21.178608 12.0 266820 1.000000
16.852277 25.000000 21.187184 13.0 266510 1.000000
16.852277 25.000000 21.184937 14.0 265484 1.000000
16.852277 25.000000 21.180184 15.0 265258 1.000000
16.852277 25.000000 21.191504 16.0 262952 1.000000
16.852277 25.000000 21.187746 17.0 262602 1.000000

(continues on next page)

2.1. Comprehensive API reference 37



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

16.852277 25.000000 21.189778 18.0 260206 1.000000
16.852277 25.000000 21.188882 19.0 259410 1.000000
16.852277 25.000000 21.185684 20.0 256806 1.000000
16.852277 25.000000 21.194036 21.0 255574 1.000000
16.852277 25.000000 21.184115 22.0 255406 1.000000
16.852277 25.000000 21.178255 23.0 252394 1.000000
16.852277 25.000000 21.184644 24.0 252220 1.000000
16.852277 25.000000 21.187020 25.0 251668 1.000000
16.852277 25.000000 21.183827 26.0 249648 1.000000
16.852277 25.000000 21.183121 27.0 247160 1.000000
16.852277 25.000000 21.180872 28.0 246238 1.000000
16.852277 25.000000 21.185251 29.0 246030 1.000000
16.852277 25.000000 21.183488 30.0 242124 1.000000
16.852277 25.000000 21.194538 31.0 242426 1.000000
16.852277 25.000000 21.190702 32.0 239778 1.000000
16.852277 25.000000 21.188985 33.0 239046 1.000000
16.852277 25.000000 21.187092 34.0 237640 1.000000
16.852277 25.000000 21.185515 35.0 236256 1.000000
16.852277 25.000000 21.190278 36.0 233536 1.000000
16.852277 25.000000 21.183240 37.0 233274 1.000000
16.852277 25.000000 21.183796 38.0 231628 1.000000
16.852277 25.000000 21.200668 39.0 230378 1.000000
16.852277 25.000000 21.181153 40.0 229006 1.000000

Corrfunc.mocks.DDtheta_mocks(autocorr, nthreads, binfile, RA1, DEC1, weights1=None,
RA2=None, DEC2=None, weights2=None, link_in_dec=True,
link_in_ra=True, verbose=False, output_thetaavg=False,
fast_acos=False, ra_refine_factor=2, dec_refine_factor=2,
max_cells_per_dim=100, copy_particles=True, en-
able_min_sep_opt=True, c_api_timer=False, isa=u’fastest’,
weight_type=None)

Function to compute the angular correlation function for points on the sky (i.e., mock catalogs or observed
galaxies).

Returns a numpy structured array containing the pair counts for the specified angular bins.

If weights are provided, the resulting pair counts are weighted. The weighting scheme depends on
weight_type.

Note: This module only returns pair counts and not the actual correlation function 𝜔(ℎ𝑒𝑡𝑎). See Corrfunc.
utils.convert_3d_counts_to_cf for computing 𝜔(ℎ𝑒𝑡𝑎) from the pair counts returned.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• nthreads (integer) – Number of threads to use.

• binfile (string or an list/array of floats. Units: degrees.) –
For string input: filename specifying the theta bins for DDtheta_mocks. The file
should contain white-space separated values of (thetamin, thetamax) for each theta
wanted. The bins need to be contiguous and sorted in increasing order (smallest bins come
first).

For array-like input: A sequence of theta values that provides the bin-edges. For example,

38 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input speci-
fying 14 (logarithmic) bins between 0.1 and 10.0 degrees. This array does not need to be
sorted.

• RA1 (array-like, real (float/double)) – The array of Right Ascensions for
the first set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0].

Calculations are done in the precision of the supplied arrays.

• DEC1 (array-like, real (float/double)) – Array of Declinations for the first
set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix cases
where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0]. Must be of same precision type as RA1.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type spec-
ifies how these weights are used; results are returned in the weightavg field. If only one of
weights1 and weights2 is specified, the other will be set to uniform weights.

• RA2 (array-like, real (float/double)) – The array of Right Ascensions for
the second set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0]. Must be of same precision type as RA1/DEC1.

• DEC2 (array-like, real (float/double)) – Array of Declinations for the sec-
ond set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix
cases where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s
in [-90.0, 90.0]. Must be of same precision type as RA1/DEC1.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• link_in_dec (boolean (default True)) – Boolean flag to create lattice in Dec-
lination. Code runs faster with this option. However, if the angular separations are too small,
then linking in declination might produce incorrect results. When running for the first time,
check your results by comparing with the output of the code for link_in_dec=False
and link_in_ra=False.

• link_in_ra (boolean (default True)) – Boolean flag to create lattice in Right
Ascension. Setting this option implies link_in_dec=True. Similar considerations as
link_in_dec described above.

If you disable both link_in_dec and link_in_ra, then the code reduces to a brute-
force pair counter. No lattices are created at all. For very small angular separations, the
brute-force method might be the most numerically stable method.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• output_thetaavg (boolean (default false)) – Boolean flag to output the av-
erage ‘‘ heta‘‘ for each bin. Code will run slower if you set this flag.

If you are calculating in single-precision, thetaavg will suffer from numerical loss of
precision and can not be trusted. If you need accurate thetaavg values, then pass in
double precision arrays for RA/DEC.

Code will run significantly slower if you enable this option. Use the keyword fast_acos
if you can tolerate some loss of precision.

2.1. Comprehensive API reference 39



Corrfunc Documentation, Release 2.3.1

• fast_acos (boolean (default false)) – Flag to use numerical approximation
for the arccos - gives better performance at the expense of some precision. Relevant only
if output_thetaavg==True.

Developers: Two versions already coded up in utils/fast_acos.h, so you can choose
the version you want. There are also notes on how to implement faster (and less accurate)
functions, particularly relevant if you know your theta range is limited. If you implement
a new version, then you will have to reinstall the entire Corrfunc package.

Note: Tests will fail if you run the tests with‘‘fast_acos=True‘‘.

• (radec)_refine_factor (integer, default is (2,2); typically
within [1-5]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Only two refine factors are to be specified and these correspond to ra and dec (rather, than
the usual three of (xyz)bin_refine_factor for all other correlation functions).

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if thetamax is too small relative
to the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string, case-insensitive (default fastest)) – Controls the runtime dispatch for the
instruction set to use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should always leave isa to
the default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional (default None)) – The type of weighting
to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [thetamin, theta-
max, thetaavg, npairs, weightavg] for each angular bin specified in the binfile. If
output_thetaavg is not set then thetavg will be set to 0.0 for all bins; similarly
for weightavg. npairs contains the number of pairs in that bin.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

40 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> import time
>>> from math import pi
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "angular_bins")
>>> N = 100000
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> RA = np.random.uniform(0.0, 2.0*pi, N)*180.0/pi
>>> cos_theta = np.random.uniform(-1.0, 1.0, N)
>>> DEC = 90.0 - np.arccos(cos_theta)*180.0/pi
>>> weights = np.ones_like(RA)
>>> autocorr = 1
>>> for isa in ['AVX', 'SSE42', 'FALLBACK']:
... for link_in_dec in [False, True]:
... for link_in_ra in [False, True]:
... results = DDtheta_mocks(autocorr, nthreads, binfile,
... RA, DEC, output_thetaavg=True,
... weights1=weights, weight_type='pair_product',
... link_in_dec=link_in_dec, link_in_ra=link_in_ra,
... isa=isa, verbose=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['thetamin'], r['thetamax'],
... r['thetaavg'], r['npairs'], r['weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
0.010000 0.014125 0.012272 62 1.000000
0.014125 0.019953 0.016978 172 1.000000
0.019953 0.028184 0.024380 298 1.000000
0.028184 0.039811 0.034321 598 1.000000
0.039811 0.056234 0.048535 1164 1.000000
0.056234 0.079433 0.068385 2438 1.000000
0.079433 0.112202 0.096631 4658 1.000000
0.112202 0.158489 0.136834 9414 1.000000
0.158489 0.223872 0.192967 19098 1.000000
0.223872 0.316228 0.272673 37848 1.000000
0.316228 0.446684 0.385344 75520 1.000000
0.446684 0.630957 0.543973 150938 1.000000
0.630957 0.891251 0.768406 301854 1.000000
0.891251 1.258925 1.085273 599896 1.000000
1.258925 1.778279 1.533461 1200238 1.000000
1.778279 2.511886 2.166009 2396338 1.000000
2.511886 3.548134 3.059159 4775162 1.000000
3.548134 5.011872 4.321445 9532582 1.000000
5.011872 7.079458 6.104214 19001930 1.000000
7.079458 10.000000 8.622400 37842502 1.000000

Corrfunc.mocks.vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_file, cosmol-
ogy, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ, verbose=False,
is_comoving_dist=False, xbin_refine_factor=1, ybin_refine_factor=1,
zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True,
c_api_timer=False, isa=u’fastest’)

2.1. Comprehensive API reference 41



Corrfunc Documentation, Release 2.3.1

Function to compute the counts-in-cells on points on the sky. Suitable for mock catalogs and observed galaxies.

Returns a numpy structured array containing the probability of a sphere of radius up to rmax containing
0--numpN-1 galaxies.

Parameters

• rmax (double) – Maximum radius of the sphere to place on the particles

• nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell is
rmax/nbins

• nspheres (integer (>= 0)) – Number of random spheres to place within the particle
distribution. For a small number of spheres, the error is larger in the measured pN’s.

• numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN
is set to 1, then only the vpf (p0) is returned. For numpN=2, p0 and p1 are returned.

More explicitly, the columns in the results look like the following:

numpN Columns in output
1 p0
2 p0 p1
3 p0 p1 p2
4 p0 p1 p2 p3

and so on. . .

Note: p0 is the vpf

• threshold_ngb (integer) – Minimum number of random points needed in a rmax
sphere such that it is considered to be entirely within the mock footprint. The command-line
version, mocks/vpf/vpf_mocks.c, assumes that the minimum number of randoms can
be at most a 1-sigma deviation from the expected random number density.

• centers_file (string, filename) – A file containing random sphere centers. If
the file does not exist, then a list of random centers will be written out. In that case, the
randoms arrays, RAND_RA, RAND_DEC and RAND_CZ are used to check that the sphere is
entirely within the footprint. If the file does exist but either rmax is too small or there are
not enough centers then the file will be overwritten.

Note: If the centers file has to be written, the code will take significantly longer to finish.
However, subsequent runs can re-use that centers file and will be faster.

• cosmology (integer, required) – Integer choice for setting cosmology. Valid val-
ues are 1->LasDamas cosmology and 2->Planck cosmology. If you need arbitrary cos-
mology, easiest way is to convert the CZ values into co-moving distance, based on your
preferred cosmology. Set is_comoving_dist=True, to indicate that the co-moving
distance conversion has already been done.

Choices:

1. LasDamas cosmology. Ω𝑚 = 0.25, ΩΛ = 0.75

2. Planck cosmology. Ω𝑚 = 0.302, ΩΛ = 0.698

To setup a new cosmology, add an entry to the function, init_cosmology in ROOT/
utils/cosmology_params.c and re-install the entire package.

• RA (array-like, real (float/double)) – The array of Right Ascensions for the
first set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0, 360.0].

42 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Calculations are done in the precision of the supplied arrays.

• DEC (array-like, real (float/double)) – Array of Declinations for the first
set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix cases
where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA.

• CZ (array-like, real (float/double)) – Array of (Speed Of Light * Redshift)
values for the first set of points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ is interpreted as the co-moving distance, rather
than (Speed Of Light * Redshift).

• RAND_RA (array-like, real (float/double)) – The array of Right Ascen-
sions for the randoms. RA’s are expected to be in [0.0, 360.0], but the code will try to
fix cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in
[0.0, 360.0].

Must be of same precision type as RA/DEC/CZ.

• RAND_DEC (array-like, real (float/double)) – Array of Declinations for the
randoms. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix cases
where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA/DEC/CZ.

• RAND_CZ (array-like, real (float/double)) – Array of (Speed Of Light *
Redshift) values for the randoms. Code will try to detect cases where redshifts have
been passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the co-moving distance, rather
than (Speed Of Light * Redshift).

Note: RAND_RA, RAND_DEC and RAND_CZ are only used when the
centers_file needs to be written out. In that case, the RAND_RA, RAND_DEC,
and RAND_CZ are used as random centers.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• is_comoving_dist (boolean (default false)) – Boolean flag to indicate that
cz values have already been converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

• (xyz)bin_refine_factor (integer, default is (1, 1, 1);
typically in [1-2]) – Controls the refinement on the cell sizes. Higher num-
bers might have a negative impact on runtime.

Note: Since the counts in spheres calculation is symmetric in all 3 dimensions, the defaults
are different from the clustering routines.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is too small relative to the
boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

2.1. Comprehensive API reference 43



Corrfunc Documentation, Release 2.3.1

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string, case-insensitive (default fastest)) – Controls the runtime dispatch for the
instruction set to use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should always leave isa to
the default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

Returns

• results (Numpy structured array) – A numpy structured array containing [rmax,
pN[numpN]] with nbins elements. Each row contains the maximum radius of the sphere
and the numpN elements in the pN array. Each element of this array contains the probability
that a sphere of radius rmax contains exactly N galaxies. For example, pN[0] (p0, the void
probibility function) is the probability that a sphere of radius rmax contains 0 galaxies.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import math
>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.vpf_mocks import vpf_mocks
>>> rmax = 10.0
>>> nbins = 10
>>> numbins_to_print = nbins
>>> nspheres = 10000
>>> numpN = 6
>>> threshold_ngb = 1 # does not matter since we have the centers
>>> cosmology = 1 # LasDamas cosmology
>>> centers_file = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/",
... "Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")
>>> N = 1000000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi

(continues on next page)

44 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> results = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb,
... centers_file, cosmology,
... RA, DEC, CZ,
... RA, DEC, CZ,
... is_comoving_dist=True)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
... # doctest: +NORMALIZE_WHITESPACE
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
... # doctest: +NORMALIZE_WHITESPACE
... print("") # doctest: +NORMALIZE_WHITESPACE

1.0 0.999 0.001 0.000 0.000 0.000 0.000
2.0 0.992 0.007 0.001 0.000 0.000 0.000
3.0 0.982 0.009 0.005 0.002 0.001 0.000
4.0 0.975 0.006 0.006 0.005 0.003 0.003
5.0 0.971 0.004 0.003 0.003 0.004 0.003
6.0 0.967 0.003 0.003 0.001 0.003 0.002
7.0 0.962 0.004 0.002 0.003 0.002 0.001
8.0 0.958 0.004 0.002 0.003 0.001 0.002
9.0 0.953 0.003 0.003 0.002 0.003 0.001

10.0 0.950 0.003 0.002 0.002 0.001 0.002

Corrfunc.mocks.DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins, binfile, RA1,
DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None,
weights2=None, is_comoving_dist=False, verbose=False, out-
put_savg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2,
ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100,
copy_particles=True, enable_min_sep_opt=True, c_api_timer=False,
isa=u’fastest’, weight_type=None)

Calculate the 2-D pair-counts corresponding to the projected correlation function, 𝜉(𝑠, 𝜇). The pairs are counted
in bins of radial separation and cosine of angle to the line-of-sight (LOS). The input positions are expected to
be on-sky co-ordinates. This module is suitable for calculating correlation functions for mock catalogs.

If weights are provided, the resulting pair counts are weighted. The weighting scheme depends on
weight_type.

Returns a numpy structured array containing the pair counts for the specified bins.

Note: This module only returns pair counts and not the actual correlation function 𝜉(𝑠, 𝜇). See the utilities
Corrfunc.utils.convert_3d_counts_to_cf for computing 𝜉(𝑠, 𝜇) from the pair counts.

New in version 2.1.0.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• cosmology (integer, required) – Integer choice for setting cosmology. Valid val-
ues are 1->LasDamas cosmology and 2->Planck cosmology. If you need arbitrary cos-
mology, easiest way is to convert the CZ values into co-moving distance, based on your
preferred cosmology. Set is_comoving_dist=True, to indicate that the co-moving
distance conversion has already been done.

Choices:

2.1. Comprehensive API reference 45



Corrfunc Documentation, Release 2.3.1

1. LasDamas cosmology. Ω𝑚 = 0.25, ΩΛ = 0.75

2. Planck cosmology. Ω𝑚 = 0.302, ΩΛ = 0.698

To setup a new cosmology, add an entry to the function, init_cosmology in ROOT/
utils/cosmology_params.c and re-install the entire package.

• nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP
was not enabled during library compilation.

• mu_max (double. Must be in range [0.0, 1.0]) – A double-precision value
for the maximum cosine of the angular separation from the line of sight (LOS). Here, mu
is defined as the angle between s and l. If 𝑣1 and 𝑣2 represent the vectors to each point
constituting the pair, then 𝑠 := 𝑣1 − 𝑣2 and 𝑙 := 1/2(𝑣1 + 𝑣2).

Note: Only pairs with 0 <= cos(𝜃𝐿𝑂𝑆) < 𝜇𝑚𝑎𝑥 are counted (no equality).

• nmu_bins (int) – The number of linear mu bins, with the bins ranging from from (0,
𝜇𝑚𝑎𝑥)

• binfile (string or an list/array of floats) – For string input: filename
specifying the s bins for DDsmu_mocks. The file should contain white-space separated
values of (smin, smax) specifying each s bin wanted. The bins need to be contiguous and
sorted in increasing order (smallest bins come first).

For array-like input: A sequence of s values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• RA1 (array-like, real (float/double)) – The array of Right Ascensions for
the first set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0].

Calculations are done in the precision of the supplied arrays.

• DEC1 (array-like, real (float/double)) – Array of Declinations for the first
set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix cases
where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA1.

• CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Red-
shift) values for the first set of points. Code will try to detect cases where redshifts
have been passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the co-moving distance, rather than cz.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type spec-
ifies how these weights are used; results are returned in the weightavg field. If only one of
weights1 or weights2 is specified, the other will be set to uniform weights.

• RA2 (array-like, real (float/double)) – The array of Right Ascensions for
the second set of points. RA’s are expected to be in [0.0, 360.0], but the code will try to fix
cases where the RA’s are in [-180, 180.0]. For peace of mind, always supply RA’s in [0.0,
360.0].

Must be of same precision type as RA1/DEC1/CZ1.

• DEC2 (array-like, real (float/double)) – Array of Declinations for the sec-
ond set of points. DEC’s are expected to be in the [-90.0, 90.0], but the code will try to fix

46 Chapter 2. Reference

https://docs.python.org/3/library/functions.html#int


Corrfunc Documentation, Release 2.3.1

cases where the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s
in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

• CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Red-
shift) values for the second set of points. Code will try to detect cases where redshifts
have been passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• is_comoving_dist (boolean (default false)) – Boolean flag to indicate that
cz values have already been converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• output_savg (boolean (default false)) – Boolean flag to output the average
s for each bin. Code will run slower if you set this flag. Also, note, if you are calculating in
single-precision, savg will suffer from numerical loss of precision and can not be trusted.
If you need accurate savg values, then pass in double precision arrays for the particle
positions.

• fast_divide_and_NR_steps (integer (default 0)) – Replaces the
division in AVX implementation with an approximate reciprocal, followed by
fast_divide_and_NR_steps of Newton-Raphson. Can improve runtime by
~15-20% on older computers. Value of 0 uses the standard division operation.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is too small relative to
the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string, case-insensitive (default fastest)) – Controls the runtime dispatch for the
instruction set to use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available).

2.1. Comprehensive API reference 47



Corrfunc Documentation, Release 2.3.1

Unless you are benchmarking the different instruction sets, you should always leave isa to
the default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional (default None)) – The type of weighting
to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [smin, smax,
savg, mumax, npairs, weightavg]. There are a total of nmu_bins in mu for each sep-
aration bin specified in the binfile, with mumax being the upper limit of the mu bin.
If output_savg is not set, then savg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can be used to compute
the actual 𝜉(𝑠, 𝜇) by combining with (DR, RR) counts.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Corrfunc.theory package

Wrapper for all clustering statistic calculations on galaxies in a simulation volume.

Corrfunc.theory.DD(autocorr, nthreads, binfile, X1, Y1, Z1, weights1=None, periodic=True,
X2=None, Y2=None, Z2=None, weights2=None, verbose=False, box-
size=0.0, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2,
zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, en-
able_min_sep_opt=True, c_api_timer=False, isa=u’fastest’, weight_type=None)

Calculate the 3-D pair-counts corresponding to the real-space correlation function, 𝜉(𝑟).

If weights are provided, the mean pair weight is stored in the "weightavg" field of the results array. The
raw pair counts in the "npairs" field are not weighted. The weighting scheme depends on weight_type.

Note: This module only returns pair counts and not the actual correlation function 𝜉(𝑟). See Corrfunc.
utils.convert_3d_counts_to_cf for computing 𝜉(𝑟) from the pair counts returned.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP
was not enabled during library compilation.

• binfile (string or an list/array of floats) – For string input: filename
specifying the r bins for DD. The file should contain white-space separated values of (rmin,
rmax) for each r wanted. The bins need to be contiguous and sorted in increasing order
(smallest bins come first).

For array-like input: A sequence of r values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• X1/Y1/Z1 (array_like, real (float/double)) – The array of X/Y/Z posi-
tions for the first set of points. Calculations are done in the precision of the supplied arrays.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type

48 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

specifies how these weights are used; results are returned in the weightavg field. If only
one of weights1 and weights2 is specified, the other will be set to uniform weights.

• periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

• X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for
the second set of points. Must be the same precision as the X1/Y1/Z1 arrays. Only required
when autocorr==0.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• boxsize (double) – The side-length of the cube in the cosmological simulation. Present
to facilitate exact calculations for periodic wrapping. If boxsize is not supplied, then the
wrapping is done based on the maximum difference within each dimension of the X/Y/Z
arrays.

• output_ravg (boolean (default false)) – Boolean flag to output the average
r for each bin. Code will run slower if you set this flag.

Note: If you are calculating in single-precision, ravg will suffer from numerical loss of
precision and can not be trusted. If you need accurate ravg values, then pass in double
precision arrays for the particle positions.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is too small relative to the
boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional. Default: None.) – The type of weight-
ing to apply. One of [“pair_product”, None].

2.1. Comprehensive API reference 49



Corrfunc Documentation, Release 2.3.1

Returns

• results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg,
npairs, weightavg] for each radial bin specified in the binfile. If output_ravg is not
set, then ravg will be set to 0.0 for all bins; similarly for weightavg. npairs contains
the number of pairs in that bin and can be used to compute the actual 𝜉(𝑟) by combining
with (DR, RR) counts.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DD import DD
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DD(autocorr, nthreads, binfile, X, Y, Z, weights1=weights,
... weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['rmin'], r['rmax'], r['ravg'],
... r['npairs'], r['weightavg'])) # doctest: +NORMALIZE_
→˓WHITESPACE
0.167536 0.238755 0.000000 0 0.000000
0.238755 0.340251 0.000000 0 0.000000
0.340251 0.484892 0.000000 0 0.000000
0.484892 0.691021 0.000000 0 0.000000
0.691021 0.984777 0.945372 2 1.000000
0.984777 1.403410 1.340525 10 1.000000
1.403410 2.000000 1.732968 36 1.000000
2.000000 2.850200 2.558878 54 1.000000
2.850200 4.061840 3.564959 208 1.000000
4.061840 5.788530 4.999278 674 1.000000
5.788530 8.249250 7.126673 2154 1.000000
8.249250 11.756000 10.201834 5996 1.000000
11.756000 16.753600 14.517830 17746 1.000000
16.753600 23.875500 20.716017 50252 1.000000

Corrfunc.theory.DDrppi(autocorr, nthreads, pimax, binfile, X1, Y1, Z1, weights1=None, pe-
riodic=True, X2=None, Y2=None, Z2=None, weights2=None, ver-
bose=False, boxsize=0.0, output_rpavg=False, xbin_refine_factor=2,
ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100,
copy_particles=True, enable_min_sep_opt=True, c_api_timer=False,
isa=u’fastest’, weight_type=None)

50 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Calculate the 3-D pair-counts corresponding to the real-space correlation function, 𝜉(𝑟𝑝, 𝜋) or ℘(𝑟𝑝). Pairs
which are separated by less than the rp bins (specified in binfile) in the X-Y plane, and less than pimax in
the Z-dimension are counted.

If weights are provided, the mean pair weight is stored in the "weightavg" field of the results array. The
raw pair counts in the "npairs" field are not weighted. The weighting scheme depends on weight_type.

Note: that this module only returns pair counts and not the actual correlation function 𝜉(𝑟𝑝, 𝜋) or
𝑤𝑝(𝑟𝑝). See the utilities Corrfunc.utils.convert_3d_counts_to_cf and Corrfunc.utils.
convert_rp_pi_counts_to_wp for computing 𝜉(𝑟𝑝, 𝜋) and 𝑤𝑝(𝑟𝑝) respectively from the pair counts.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP
was not enabled during library compilation.

• pimax (double) – A double-precision value for the maximum separation along the Z-
dimension.

Distances along the :math:\pi direction are binned with unit depth. For instance, if
pimax=40, then 40 bins will be created along the pi direction.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

• binfile (string or an list/array of floats) – For string input: filename
specifying the rp bins for DDrppi. The file should contain white-space separated values of
(rpmin, rpmax) for each rp wanted. The bins need to be contiguous and sorted in increasing
order (smallest bins come first).

For array-like input: A sequence of rp values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• X1/Y1/Z1 (array-like, real (float/double)) – The array of X/Y/Z posi-
tions for the first set of points. Calculations are done in the precision of the supplied arrays.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type
specifies how these weights are used; results are returned in the weightavg field. If only
one of weights1 and weights2 is specified, the other will be set to uniform weights.

• X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for
the second set of points. Must be the same precision as the X1/Y1/Z1 arrays. Only required
when autocorr==0.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• boxsize (double) – The side-length of the cube in the cosmological simulation. Present
to facilitate exact calculations for periodic wrapping. If boxsize is not supplied, then the
wrapping is done based on the maximum difference within each dimension of the X/Y/Z
arrays.

2.1. Comprehensive API reference 51



Corrfunc Documentation, Release 2.3.1

• output_rpavg (boolean (default false)) – Boolean flag to output the average
rp for each bin. Code will run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will suffer from numerical loss of
precision and can not be trusted. If you need accurate rpavg values, then pass in double
precision arrays for the particle positions.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is too small relative to
the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional. Default: None.) – The type of weight-
ing to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [rpmin, rp-
max, rpavg, pimax, npairs, weightavg] for each radial bin specified in the binfile.
If output_rpavg is not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can be used to compute
𝜉(𝑟𝑝, 𝜋) by combining with (DR, RR) counts.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin

(continues on next page)

52 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> import Corrfunc
>>> from Corrfunc.theory.DDrppi import DDrppi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> pimax = 40.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDrppi(autocorr, nthreads, pimax, binfile,
... X, Y, Z, weights1=weights, weight_type='pair_product',
→˓output_rpavg=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax
→˓'],
... r['rpavg'], r['pimax'], r['npairs'], r[
→˓'weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
11.756000 16.753600 14.379250 40.0 1150 1.000000
16.753600 23.875500 20.449131 1.0 2604 1.000000
16.753600 23.875500 20.604834 2.0 2370 1.000000
16.753600 23.875500 20.523989 3.0 2428 1.000000
16.753600 23.875500 20.475181 4.0 2462 1.000000
16.753600 23.875500 20.458005 5.0 2532 1.000000
16.753600 23.875500 20.537162 6.0 2522 1.000000
16.753600 23.875500 20.443087 7.0 2422 1.000000
16.753600 23.875500 20.474580 8.0 2360 1.000000
16.753600 23.875500 20.420360 9.0 2512 1.000000
16.753600 23.875500 20.478355 10.0 2472 1.000000
16.753600 23.875500 20.485268 11.0 2406 1.000000
16.753600 23.875500 20.372985 12.0 2420 1.000000
16.753600 23.875500 20.647998 13.0 2378 1.000000
16.753600 23.875500 20.556208 14.0 2420 1.000000
16.753600 23.875500 20.527992 15.0 2462 1.000000
16.753600 23.875500 20.581017 16.0 2380 1.000000
16.753600 23.875500 20.491819 17.0 2346 1.000000
16.753600 23.875500 20.534440 18.0 2496 1.000000
16.753600 23.875500 20.529129 19.0 2512 1.000000
16.753600 23.875500 20.501946 20.0 2500 1.000000
16.753600 23.875500 20.513349 21.0 2544 1.000000
16.753600 23.875500 20.471915 22.0 2430 1.000000
16.753600 23.875500 20.450651 23.0 2354 1.000000
16.753600 23.875500 20.550753 24.0 2460 1.000000
16.753600 23.875500 20.540262 25.0 2490 1.000000
16.753600 23.875500 20.559572 26.0 2350 1.000000
16.753600 23.875500 20.534245 27.0 2382 1.000000
16.753600 23.875500 20.511302 28.0 2508 1.000000
16.753600 23.875500 20.491632 29.0 2456 1.000000
16.753600 23.875500 20.592493 30.0 2386 1.000000
16.753600 23.875500 20.506234 31.0 2484 1.000000
16.753600 23.875500 20.482109 32.0 2538 1.000000

(continues on next page)

2.1. Comprehensive API reference 53



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

16.753600 23.875500 20.518463 33.0 2544 1.000000
16.753600 23.875500 20.482515 34.0 2534 1.000000
16.753600 23.875500 20.503124 35.0 2382 1.000000
16.753600 23.875500 20.471307 36.0 2356 1.000000
16.753600 23.875500 20.384231 37.0 2554 1.000000
16.753600 23.875500 20.454012 38.0 2458 1.000000
16.753600 23.875500 20.585543 39.0 2394 1.000000
16.753600 23.875500 20.504965 40.0 2500 1.000000

Corrfunc.theory.wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=None, weight_type=None,
verbose=False, output_rpavg=False, xbin_refine_factor=2, ybin_refine_factor=2,
zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, en-
able_min_sep_opt=True, c_api_timer=False, c_cell_timer=False, isa=u’fastest’)

Function to compute the projected correlation function in a periodic cosmological box. Pairs which are separated
by less than the rp bins (specified in binfile) in the X-Y plane, and less than pimax in the Z-dimension are
counted.

If weights are provided, the resulting correlation function is weighted. The weighting scheme depends on
weight_type.

Note: Pairs are double-counted. And if rpmin is set to 0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin is the total number of particles.

Parameters

• boxsize (double) – A double-precision value for the boxsize of the simulation in same
units as the particle positions and the rp bins.

• pimax (double) – A double-precision value for the maximum separation along the Z-
dimension.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

• nthreads (integer) – Number of threads to use.

• binfile (string or an list/array of floats) – For string input: filename
specifying the rp bins for wp. The file should contain white-space separated values of
(rpmin, rpmax) for each rp wanted. The bins need to be contiguous and sorted in increasing
order (smallest bins come first).

For array-like input: A sequence of rp values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• X/Y/Z (arraytype, real (float/double)) – Particle positions in the 3 axes.
Must be within [0, boxsize] and specified in the same units as rp_bins and boxsize. All 3
arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays, i.e., calculations will be in
floating point if XYZ are single precision arrays (C float type); or in double-precision if
XYZ are double precision arrays (C double type).

• weights (array_like, real (float/double), optional) – A scalar, or an
array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type spec-
ifies how these weights are used; results are returned in the weightavg field.

54 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• output_rpavg (boolean (default false)) – Boolean flag to output the average
rp for each bin. Code will run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will suffer from numerical loss of
precision and can not be trusted. If you need accurate rpavg values, then pass in double
precision arrays for the particle positions.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is too small relative to
the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• c_cell_timer (boolean (default false)) – Boolean flag to measure actual
time spent per cell-pair within the C libraries. A very detailed timer that stores information
about the number of particles in each cell, the thread id that processed that cell-pair and the
amount of time in nano-seconds taken to process that cell pair. This timer can be used to
study the instruction set efficiency, and load-balancing of the code.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional. Default: None.) – The type of weight-
ing to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [rpmin, rp-
max, rpavg, wp, npairs, weightavg] for each radial specified in the binfile. If
output_rpavg is not set then rpavg will be set to 0.0 for all bins; similarly for
weightavg. wp contains the projected correlation function while npairs contains the
number of unique pairs in that bin. If using weights, wp will be weighted while npairs
will not be.

2.1. Comprehensive API reference 55



Corrfunc Documentation, Release 2.3.1

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

• cell_time (list, optional) – Only returned if c_cell_timer is set. Contains detailed stats
about each cell-pair visited during pair-counting, viz., number of particles in each of the
cells in the pair, 1-D cell-indices for each cell in the pair, time (in nano-seconds) to process
the pair and the thread-id for the thread that processed that cell-pair.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.wp import wp
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> pimax = 40.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=np.ones_
→˓like(X), weight_type='pair_product')
>>> for r in results:
... print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}".
... format(r['rmin'], r['rmax'],
... r['rpavg'], r['wp'], r['npairs'], r['weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
0.167536 0.238755 0.000000 66.717143 18 1.000000
0.238755 0.340251 0.000000 -15.786045 16 1.000000
0.340251 0.484892 0.000000 2.998470 42 1.000000
0.484892 0.691021 0.000000 -15.779885 66 1.000000
0.691021 0.984777 0.000000 -11.966728 142 1.000000
0.984777 1.403410 0.000000 -9.699906 298 1.000000
1.403410 2.000000 0.000000 -11.698771 588 1.000000
2.000000 2.850200 0.000000 3.848375 1466 1.000000
2.850200 4.061840 0.000000 -0.921452 2808 1.000000
4.061840 5.788530 0.000000 0.454851 5802 1.000000
5.788530 8.249250 0.000000 1.428344 11926 1.000000
8.249250 11.756000 0.000000 -1.067885 23478 1.000000
11.756000 16.753600 0.000000 -0.553319 47994 1.000000
16.753600 23.875500 0.000000 -0.086433 98042 1.000000

Corrfunc.theory.xi(boxsize, nthreads, binfile, X, Y, Z, weights=None, weight_type=None, ver-
bose=False, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2,
zbin_refine_factor=1, max_cells_per_dim=100, copy_particles=True, en-
able_min_sep_opt=True, c_api_timer=False, isa=u’fastest’)

Function to compute the projected correlation function in a periodic cosmological box. Pairs which are separated
by less than the r bins (specified in binfile) in 3-D real space.

If weights are provided, the resulting correlation function is weighted. The weighting scheme depends on
weight_type.

56 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Note: Pairs are double-counted. And if rmin is set to 0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin is the total number of particles.

Parameters

• boxsize (double) – A double-precision value for the boxsize of the simulation in same
units as the particle positions and the r bins.

• nthreads (integer) – Number of threads to use.

• binfile (string or an list/array of floats) – For string input: filename
specifying the r bins for xi. The file should contain white-space separated values of (rmin,
rmax) for each r wanted. The bins need to be contiguous and sorted in increasing order
(smallest bins come first).

For array-like input: A sequence of r values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• X/Y/Z (arraytype, real (float/double)) – Particle positions in the 3 axes.
Must be within [0, boxsize] and specified in the same units as rp_bins and boxsize. All 3
arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays, i.e., calculations will be in
floating point if XYZ are single precision arrays (C float type); or in double-precision if
XYZ are double precision arrays (C double type).

• weights (array_like, real (float/double), optional) – A scalar, or an
array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type spec-
ifies how these weights are used; results are returned in the weightavg field.

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• output_ravg (boolean (default false)) – Boolean flag to output the average
r for each bin. Code will run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will suffer from numerical loss of
precision and can not be trusted. If you need accurate rpavg values, then pass in double
precision arrays for the particle positions.

• (xyz)bin_refine_factor (integer, default is (2,2,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is too small relative to the
boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

2.1. Comprehensive API reference 57



Corrfunc Documentation, Release 2.3.1

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (string, optional, Default: None.) – The type of weight-
ing to apply. One of [“pair_product”, None].

Returns

• results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg,
xi, npairs, weightavg] for each radial specified in the binfile. If output_ravg is
not set then ravg will be set to 0.0 for all bins; similarly for weightavg. xi contains
the correlation function while npairs contains the number of pairs in that bin. If using
weights, xi will be weighted while npairs will not be.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.xi import xi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = xi(boxsize, nthreads, binfile, X, Y, Z, weights=weights, weight_
→˓type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d}
→˓{5:10.6f}"
... .format(r['rmin'], r['rmax'],
... r['ravg'], r['xi'], r['npairs'], r['weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
0.167536 0.238755 0.226592 -0.205733 4 1.000000
0.238755 0.340251 0.289277 -0.176729 12 1.000000
0.340251 0.484892 0.426819 -0.051829 40 1.000000
0.484892 0.691021 0.596187 -0.131853 106 1.000000
0.691021 0.984777 0.850100 -0.049207 336 1.000000
0.984777 1.403410 1.225112 0.028543 1052 1.000000

(continues on next page)

58 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

1.403410 2.000000 1.737153 0.011403 2994 1.000000
2.000000 2.850200 2.474588 0.005405 8614 1.000000
2.850200 4.061840 3.532018 -0.014098 24448 1.000000
4.061840 5.788530 5.022241 -0.010784 70996 1.000000
5.788530 8.249250 7.160648 -0.001588 207392 1.000000
8.249250 11.756000 10.207213 -0.000323 601002 1.000000

11.756000 16.753600 14.541171 0.000007 1740084 1.000000
16.753600 23.875500 20.728773 -0.001595 5028058 1.000000

Corrfunc.theory.vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, verbose=False, periodic=True,
boxsize=0.0, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1,
max_cells_per_dim=100, copy_particles=True, c_api_timer=False,
isa=u’fastest’)

Function to compute the counts-in-cells on 3-D real-space points.

Returns a numpy structured array containing the probability of a sphere of radius up to rmax containing [0,
numpN-1] galaxies.

Parameters

• rmax (double) – Maximum radius of the sphere to place on the particles

• nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell is
rmax/nbins

• nspheres (integer (>= 0)) – Number of random spheres to place within the particle
distribution. For a small number of spheres, the error is larger in the measured pN’s.

• numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN
is set to 1, then only the vpf (p0) is returned. For numpN=2, p0 and p1 are returned.

More explicitly, the columns in the results look like the following:

numpN Columns in output
1 p0
2 p0 p1
3 p0 p1 p2
4 p0 p1 p2 p3

and so on. . .

Note: p0 is the vpf

• seed (unsigned integer) – Random number seed for the underlying GSL random
number generator. Used to draw centers of the spheres.

• X/Y/Z (arraytype, real (float/double)) – Particle positions in the 3 axes.
Must be within [0, boxsize] and specified in the same units as rp_bins and boxsize. All 3
arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays, i.e., calculations will be in
floating point if XYZ are single precision arrays (C float type); or in double-precision if
XYZ are double precision arrays (C double type).

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

2.1. Comprehensive API reference 59



Corrfunc Documentation, Release 2.3.1

• boxsize (double) – The side-length of the cube in the cosmological simulation. Present
to facilitate exact calculations for periodic wrapping. If boxsize is not supplied, then the
wrapping is done based on the maximum difference within each dimension of the X/Y/Z
arrays.

• (xyz)bin_refine_factor (integer, default is (1,1,1);
typically within [1-3]) – Controls the refinement on the cell sizes. Can
have up to a 20% impact on runtime.

Note: Since the counts in spheres calculation is symmetric in all 3 dimensions, the defaults
are different from the clustering routines.

• max_cells_per_dim (integer, default is 100, typical values in
[50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is too small relative to the
boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

Returns

results – A numpy structured array containing [rmax, pN[numpN]] with nbins elements. Each
row contains the maximum radius of the sphere and the numpN elements in the pN array. Each
element of this array contains the probability that a sphere of radius rmax contains exactly N
galaxies. For example, pN[0] (p0, the void probibility function) is the probability that a sphere
of radius rmax contains zero galaxies.

if c_api_timer is set, then the return value is a tuple containing (results, api_time).
api_time measures only the time spent within the C library and ignores all python overhead.

Return type Numpy structured array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.vpf import vpf
>>> rmax = 10.0
>>> nbins = 10
>>> nspheres = 10000
>>> numpN = 5
>>> seed = -1
>>> N = 100000

(continues on next page)

60 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
... # doctest: +NORMALIZE_WHITESPACE
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
... # doctest: +NORMALIZE_WHITESPACE
... print("") # doctest: +NORMALIZE_WHITESPACE
1.0 0.995 0.005 0.000 0.000 0.000
2.0 0.956 0.044 0.001 0.000 0.000
3.0 0.858 0.130 0.012 0.001 0.000
4.0 0.695 0.252 0.047 0.005 0.001
5.0 0.493 0.347 0.127 0.028 0.005
6.0 0.295 0.362 0.219 0.091 0.026
7.0 0.141 0.285 0.265 0.179 0.085
8.0 0.056 0.159 0.228 0.229 0.161
9.0 0.019 0.066 0.135 0.192 0.192
10.0 0.003 0.019 0.054 0.106 0.150

Corrfunc.theory.DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins, X1, Y1, Z1, weights1=None,
periodic=True, X2=None, Y2=None, Z2=None, weights2=None, ver-
bose=False, boxsize=0.0, output_savg=False, fast_divide_and_NR_steps=0,
xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1,
max_cells_per_dim=100, copy_particles=True, enable_min_sep_opt=True,
c_api_timer=False, isa=u’fastest’, weight_type=None)

Calculate the 2-D pair-counts corresponding to the redshift-space correlation function, 𝜉(𝑠, 𝜇) Pairs which are
separated by less than the s bins (specified in binfile) in 3-D, and less than s*mu_max in the Z-dimension
are counted.

If weights are provided, the mean pair weight is stored in the "weightavg" field of the results array. The
raw pair counts in the "npairs" field are not weighted. The weighting scheme depends on weight_type.

Note: This module only returns pair counts and not the actual correlation function 𝜉(𝑠, 𝜇). See the utilities
Corrfunc.utils.convert_3d_counts_to_cf for computing 𝜉(𝑠, 𝜇) from the pair counts.

New in version 2.1.0.

Parameters

• autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If auto-
corr is set to 1, then the second set of particle positions are not required.

• nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP
was not enabled during library compilation.

• binfile (string or an list/array of floats) – For string input: filename
specifying the s bins for DDsmu_mocks. The file should contain white-space separated
values of (smin, smax) specifying each s bin wanted. The bins need to be contiguous and
sorted in increasing order (smallest bins come first).

2.1. Comprehensive API reference 61



Corrfunc Documentation, Release 2.3.1

For array-like input: A sequence of s values that provides the bin-edges. For example, np.
logspace(np.log10(0.1), np.log10(10.0), 15) is a valid input specifying
14 (logarithmic) bins between 0.1 and 10.0. This array does not need to be sorted.

• mu_max (double. Must be in range (0.0, 1.0]) – A double-precision value
for the maximum cosine of the angular separation from the line of sight (LOS). Here, LOS
is taken to be along the Z direction.

Note: Only pairs with 0 <= cos(𝜃𝐿𝑂𝑆) < 𝜇𝑚𝑎𝑥 are counted (no equality).

• nmu_bins (int) – The number of linear mu bins, with the bins ranging from from (0,
𝜇𝑚𝑎𝑥)

• X1/Y1/Z1 (array-like, real (float/double)) – The array of X/Y/Z posi-
tions for the first set of points. Calculations are done in the precision of the supplied arrays.

• weights1 (array_like, real (float/double), optional) – A scalar, or
an array of weights of shape (n_weights, n_positions) or (n_positions,). weight_type
specifies how these weights are used; results are returned in the weightavg field. If only
one of weights1 and weights2 is specified, the other will be set to uniform weights.

• periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

• X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for
the second set of points. Must be the same precision as the X1/Y1/Z1 arrays. Only required
when autocorr==0.

• weights2 (array-like, real (float/double), optional) – Same as
weights1, but for the second set of positions

• verbose (boolean (default false)) – Boolean flag to control output of informa-
tional messages

• boxsize (double) – The side-length of the cube in the cosmological simulation. Present
to facilitate exact calculations for periodic wrapping. If boxsize is not supplied, then the
wrapping is done based on the maximum difference within each dimension of the X/Y/Z
arrays.

• output_savg (boolean (default false)) – Boolean flag to output the average
s for each bin. Code will run slower if you set this flag. Also, note, if you are calculating
in single-precision, s will suffer from numerical loss of precision and can not be trusted. If
you need accurate s values, then pass in double precision arrays for the particle positions.

• fast_divide_and_NR_steps (integer (default 0)) – Replaces the
division in AVX implementation with an approximate reciprocal, followed by
fast_divide_and_NR_steps of Newton-Raphson. Can improve runtime by
~15-20% on older computers. Value of 0 uses the standard division operation.

• (xyz)bin_refine_factor (integer (default (2,2,1) typical
values in [1-3])) – Controls the refinement on the cell sizes. Can have up to
a 20% impact on runtime.

• max_cells_per_dim (integer (default 100, typical values in
[50-300])) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is too small relative to
the boxsize (and increasing helps the runtime).

• copy_particles (boolean (default True)) – Boolean flag to make a copy of
the particle positions If set to False, the particles will be re-ordered in-place

New in version 2.3.0.

62 Chapter 2. Reference

https://docs.python.org/3/library/functions.html#int


Corrfunc Documentation, Release 2.3.1

• enable_min_sep_opt (boolean (default true)) – Boolean flag to allow op-
timizations based on min. separation between pairs of cells. Here to allow for comparison
studies.

New in version 2.3.0.

• c_api_timer (boolean (default false)) – Boolean flag to measure actual time
spent in the C libraries. Here to allow for benchmarking and scaling studies.

• isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to
use. Options are: [fastest, avx512f, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction set on the current com-
puter. However, if you set isa to, say, avx and avx is not available on the computer, then
the code will revert to using fallback (even though sse42 might be available). Unless
you are benchmarking the different instruction sets, you should always leave isa to the
default value. And if you are benchmarking, then the string supplied here gets translated
into an enum for the instruction set defined in utils/defs.h.

• weight_type (str, optional) – The type of pair weighting to apply. Options:
“pair_product”, None; Default: None.

Returns

• results (A python list) – A python list containing nmu_bins of [smin, smax, savg,
mu_max, npairs, weightavg] for each spatial bin specified in the binfile. There will
be a total of nmu_bins ranging from [0, mu_max) per spatial bin. If output_savg is
not set, then savg will be set to 0.0 for all bins; similarly for weight_avg. npairs
contains the number of pairs in that bin.

• api_time (float, optional) – Only returned if c_api_timer is set. api_time measures
only the time spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DDsmu import DDsmu
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> mu_max = 1.0
>>> seed = 42
>>> nmu_bins = 10
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins,
... X, Y, Z, weights1=weights, weight_type='pair_product',
→˓output_savg=True)
>>> for r in results[100:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"

(continues on next page)

2.1. Comprehensive API reference 63

https://docs.python.org/3/library/stdtypes.html#str


Corrfunc Documentation, Release 2.3.1

(continued from previous page)

... " {4:10d} {5:10.6f}".format(r['smin'], r['smax
→˓'],
... r['savg'], r['mu_max'], r['npairs'], r[
→˓'weightavg']))
... # doctest: +NORMALIZE_WHITESPACE
5.788530 8.249250 7.148213 0.1 230 1.000000
5.788530 8.249250 7.157218 0.2 236 1.000000
5.788530 8.249250 7.165338 0.3 208 1.000000
5.788530 8.249250 7.079905 0.4 252 1.000000
5.788530 8.249250 7.251661 0.5 184 1.000000
5.788530 8.249250 7.118536 0.6 222 1.000000
5.788530 8.249250 7.083466 0.7 238 1.000000
5.788530 8.249250 7.198184 0.8 170 1.000000
5.788530 8.249250 7.127409 0.9 208 1.000000
5.788530 8.249250 6.973090 1.0 206 1.000000
8.249250 11.756000 10.149183 0.1 592 1.000000
8.249250 11.756000 10.213009 0.2 634 1.000000
8.249250 11.756000 10.192220 0.3 532 1.000000
8.249250 11.756000 10.246931 0.4 544 1.000000
8.249250 11.756000 10.102675 0.5 530 1.000000
8.249250 11.756000 10.276180 0.6 644 1.000000
8.249250 11.756000 10.251264 0.7 666 1.000000
8.249250 11.756000 10.138399 0.8 680 1.000000
8.249250 11.756000 10.191916 0.9 566 1.000000
8.249250 11.756000 10.243229 1.0 608 1.000000
11.756000 16.753600 14.552776 0.1 1734 1.000000
11.756000 16.753600 14.579991 0.2 1806 1.000000
11.756000 16.753600 14.599611 0.3 1802 1.000000
11.756000 16.753600 14.471100 0.4 1820 1.000000
11.756000 16.753600 14.480192 0.5 1740 1.000000
11.756000 16.753600 14.493679 0.6 1746 1.000000
11.756000 16.753600 14.547713 0.7 1722 1.000000
11.756000 16.753600 14.465390 0.8 1750 1.000000
11.756000 16.753600 14.547465 0.9 1798 1.000000
11.756000 16.753600 14.440975 1.0 1828 1.000000
16.753600 23.875500 20.720406 0.1 5094 1.000000
16.753600 23.875500 20.735403 0.2 5004 1.000000
16.753600 23.875500 20.721069 0.3 5172 1.000000
16.753600 23.875500 20.723648 0.4 5014 1.000000
16.753600 23.875500 20.650621 0.5 5094 1.000000
16.753600 23.875500 20.688135 0.6 5076 1.000000
16.753600 23.875500 20.735691 0.7 4910 1.000000
16.753600 23.875500 20.714097 0.8 4864 1.000000
16.753600 23.875500 20.751836 0.9 4954 1.000000
16.753600 23.875500 20.721183 1.0 5070 1.000000

Corrfunc.io module

Routines to read galaxy catalogs from disk.

Corrfunc.io.read_fastfood_catalog(filename, return_dtype=None, need_header=None)
Read a galaxy catalog from a fast-food binary file.

Parameters

• filename (string) – Filename containing the galaxy positions

64 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

• return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies
the datatype for the returned arrays. Must be in {np.float, np.float32}

• need_header (boolean, default None.) – Returns the header found in the fast-
food file in addition to the X/Y/Z arrays.

Returns

X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

If need_header is set, then the header is also returned

Return type numpy arrays

Example

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_fastfood_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/data/",
... "gals_Mr19.ff")
>>> X, Y, Z = read_fastfood_catalog(filename)
>>> N = 20
>>> for x,y,z in zip(X[0:N], Y[0:N], Z[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(x, y, z))
... # doctest: +NORMALIZE_WHITESPACE
419.94550 1.96340 0.01610
419.88272 1.79736 0.11960
0.32880 10.63620 4.16550
0.15314 10.68723 4.06529
0.46400 8.91150 6.97090
6.30690 9.77090 8.61080
5.87160 9.65870 9.29810
8.06210 0.42350 4.89410
11.92830 4.38660 4.54410
11.95543 4.32622 4.51485
11.65676 4.34665 4.53181
11.75739 4.26262 4.31666
11.81329 4.27530 4.49183
11.80406 4.54737 4.26824
12.61570 4.14470 3.70140
13.23640 4.34750 5.26450
13.19833 4.33196 5.29435
13.21249 4.35695 5.37418
13.06805 4.24275 5.35126
13.19693 4.37618 5.28772

Corrfunc.io.read_ascii_catalog(filename, return_dtype=None)
Read a galaxy catalog from an ascii file.

Parameters

• filename (string) – Filename containing the galaxy positions

• return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies
the datatype for the returned arrays. Must be in {np.float, np.float32}

Returns X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

2.1. Comprehensive API reference 65



Corrfunc Documentation, Release 2.3.1

Return type numpy arrays

Example

>>> from __future__ import print_function
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_ascii_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/", "Mr19_mock_northonly.rdcz.dat")
>>> ra, dec, cz = read_ascii_catalog(filename)
>>> N = 20
>>> for r,d,c in zip(ra[0:N], dec[0:N], cz[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(r, d, c))
... # doctest: +NORMALIZE_WHITESPACE
178.45087 67.01112 19905.28514
178.83495 67.72519 19824.02285
179.50132 67.67628 19831.21553
182.75497 67.13004 19659.79825
186.29853 68.64099 20030.64412
186.32346 68.65879 19763.38137
187.36173 68.15151 19942.66996
187.20613 68.56189 19996.36607
185.56358 67.97724 19729.32308
183.27930 67.11318 19609.71345
183.86498 67.82823 19500.44130
184.07771 67.43429 19440.53790
185.13370 67.15382 19390.60304
189.15907 68.28252 19858.85853
190.12209 68.55062 20044.29744
193.65245 68.36878 19445.62469
194.93514 68.34870 19158.93155
180.36897 67.50058 18671.40780
179.63278 67.51318 18657.59191
180.75742 67.95530 18586.88913

Corrfunc.io.read_catalog(filebase=None, return_dtype=<Mock id=’139706480209424’>)
Reads a galaxy/randoms catalog and returns 3 XYZ arrays.

Parameters

• filebase (string (optional)) – The fully qualified path to the file. If omitted,
reads the theory galaxy catalog under ../theory/tests/data/

• return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies
the datatype for the returned arrays. Must be in {np.float, np.float32}

Returns

• x y z - Unpacked numpy arrays compatible with the installed

• version of Corrfunc.

Note: If the filename is omitted, then first the fast-food file is searched for, and then the ascii file. End-users
should always supply the full filename.

66 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Corrfunc.utils module

A set of utility routines

Corrfunc.utils.convert_3d_counts_to_cf(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2,
estimator=u’LS’)

Converts raw pair counts to a correlation function.

Parameters

• ND1 (integer) – Number of points in the first dataset

• ND2 (integer) – Number of points in the second dataset

• NR1 (integer) – Number of points in the randoms for first dataset

• NR2 (integer) – Number of points in the randoms for second dataset

• D1D2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and
D2

• D1R2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and
R2

• D2R1 (array-like, integer) – Pair-counts for the cross-correlation between D2 and
R1

• R1R2 (array-like, integer) – Pair-counts for the cross-correlation between R1 and
R2

• all of these pair-counts arrays, the corresponding numpy (For)
–

• returned by the theory/mocks modules can also be passed
(struct) –

• estimator (string, default='LS' (Landy-Szalay)) – The kind of estima-
tor to use for computing the correlation function. Currently, only supports Landy-Szalay

Returns cf – The correlation function, calculated using the chosen estimator, is returned. NAN is
returned for the bins where the RR count is 0.

Return type A numpy array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.DD import DD
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> rand_N = 3*N
>>> seed = 42
>>> np.random.seed(seed)
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 2

(continues on next page)

2.1. Comprehensive API reference 67



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> rmin = 0.1
>>> rmax = 15.0
>>> nbins = 10
>>> bins = np.linspace(rmin, rmax, nbins + 1)
>>> autocorr = 1
>>> DD_counts = DD(autocorr, nthreads, bins, X, Y, Z)
>>> autocorr = 0
>>> DR_counts = DD(autocorr, nthreads, bins,
... X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z)
>>> autocorr = 1
>>> RR_counts = DD(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z)
>>> cf = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)
>>> for xi in cf: print("{0:10.6f}".format(xi))
... # doctest: +NORMALIZE_WHITESPACE
22.769019
3.612709
1.621372
1.000969
0.691646
0.511819
0.398872
0.318815
0.255643
0.207759

Corrfunc.utils.convert_rp_pi_counts_to_wp(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1,
R1R2, nrpbins, pimax, dpi=1.0, estima-
tor=u’LS’)

Converts raw pair counts to a correlation function.

Parameters

• ND1 (integer) – Number of points in the first dataset

• ND2 (integer) – Number of points in the second dataset

• NR1 (integer) – Number of points in the randoms for first dataset

• NR2 (integer) – Number of points in the randoms for second dataset

• D1D2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and
D2

• D1R2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and
R2

• D2R1 (array-like, integer) – Pair-counts for the cross-correlation between D2 and
R1

• R1R2 (array-like, integer) – Pair-counts for the cross-correlation between R1 and
R2

• all of these pair-counts arrays, the corresponding numpy (For)
–

• returned by the theory/mocks modules can also be passed
(struct) –

68 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

• nrpbins (integer) – Number of bins in rp

• pimax (float) – Integration distance along the line of sight direction

• dpi (float, default=1.0 Mpc/h) – Binsize in the line of sight direction

• estimator (string, default='LS' (Landy-Szalay)) – The kind of estima-
tor to use for computing the correlation function. Currently, only supports Landy-Szalay

Returns wp – The projected correlation function, calculated using the chosen estimator, is returned.
If any of the pi bins (in an rp bin) contains 0 for the RR counts, then NAN is returned for that
rp bin.

Return type A numpy array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.DDrppi import DDrppi
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> rand_N = 3*N
>>> seed = 42
>>> np.random.seed(seed)
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 4
>>> pimax = 40.0
>>> nrpbins = 20
>>> rpmin = 0.1
>>> rpmax = 10.0
>>> bins = np.linspace(rpmin, rpmax, nrpbins + 1)
>>> autocorr = 1
>>> DD_counts = DDrppi(autocorr, nthreads, pimax, bins,
... X, Y, Z)
>>> autocorr = 0
>>> DR_counts = DDrppi(autocorr, nthreads, pimax, bins,
... X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z)
>>> autocorr = 1
>>> RR_counts = DDrppi(autocorr, nthreads, pimax, bins,
... rand_X, rand_Y, rand_Z)
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts,
... nrpbins, pimax)
>>> for w in wp: print("{0:10.6f}".format(w))
... # doctest: +NORMALIZE_WHITESPACE
187.592199
83.059181
53.200599
40.389354
33.356371

(continues on next page)

2.1. Comprehensive API reference 69

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Corrfunc Documentation, Release 2.3.1

(continued from previous page)

29.045476
26.088133
23.628340
21.703961
20.153125
18.724781
17.433235
16.287183
15.443230
14.436193
13.592727
12.921226
12.330074
11.696364
11.208365

Corrfunc.utils.translate_isa_string_to_enum(isa)
Helper function to convert an user-supplied string to the underlying enum in the C-API. The extensions only have
specific implementations for AVX512F, AVX, SSE42 and FALLBACK. Any other value will raise a ValueError.

Parameters isa (string) – A string containing the desired instruction set. Valid values are
[‘AVX512F’, ‘AVX’, ‘SSE42’, ‘FALLBACK’, ‘FASTEST’]

Returns instruction_set – An integer corresponding to the desired instruction set, as used in the
underlying C API. The enum used here should be defined exactly the same way as the enum in
utils/defs.h.

Return type integer

Corrfunc.utils.return_file_with_rbins(rbins)
Helper function to ensure that the binfile required by the Corrfunc extensions is a actually a string.

Checks if the input is a string and file; return if True. If not, and the input is an array, then a temporary file is
created and the contents of rbins is written out.

Parameters rbins (string or array-like) – Expected to be a string or an array containing
the bins

Returns binfile – If the input rbins was a valid filename, then returns the same string. If rbins
was an array, then this function creates a temporary file with the contents of the rbins arrays.
This temporary filename is returned

Return type string, filename

Corrfunc.utils.fix_ra_dec(ra, dec)
Wraps input RA and DEC values into range expected by the extensions.

Parameters

• RA (array-like, units must be degrees) – Right Ascension values (astro-
nomical longitude)

• DEC (array-like, units must be degrees) – Declination values (astronomical
latitude)

Returns Tuple (RA, DEC) – RA is wrapped into range [0.0, 360.0] Declination is wrapped into
range [-90.0, 90.0]

Return type array-like

70 Chapter 2. Reference



Corrfunc Documentation, Release 2.3.1

Corrfunc.utils.fix_cz(cz)
Multiplies the input array by speed of light, if the input values are too small.

Essentially, converts redshift into cz, if the user passed redshifts instead of cz.

Parameters cz (array-like, reals) – An array containing [Speed of Light *]
redshift values.

Returns cz – Actual cz values, multiplying the input cz array by the Speed of Light, if
redshift values were passed as input cz.

Return type array-like

Corrfunc.utils.compute_nbins(max_diff, binsize, refine_factor=1, max_nbins=None)
Helper utility to find the number of bins for that satisfies the constraints of (binsize, refine_factor, and
max_nbins).

Parameters

• max_diff (double) – Max. difference (spatial or angular) to be spanned, (i.e., range of
allowed domain values)

• binsize (double) – Min. allowed binsize (spatial or angular)

• refine_factor (integer, default 1) – How many times to refine the bins. The
refinements occurs after nbins has already been determined (with refine_factor-1).
Thus, the number of bins will be exactly higher by refine_factor compared to the base
case of refine_factor=1

• max_nbins (integer, default None) – Max number of allowed cells

Returns nbins – Number of bins that satisfies the constraints of bin size >= binsize, the refine-
ment factor and nbins <= max_nbins.

Return type integer, >= 1

Example

>>> from Corrfunc.utils import compute_nbins
>>> max_diff = 180
>>> binsize = 10
>>> compute_nbins(max_diff, binsize)
18
>>> refine_factor=2
>>> max_nbins = 20
>>> compute_nbins(max_diff, binsize, refine_factor=refine_factor,
... max_nbins=max_nbins)
20

Corrfunc.utils.gridlink_sphere(thetamax, ra_limits=None, dec_limits=None, link_in_ra=True,
ra_refine_factor=1, dec_refine_factor=1, max_ra_cells=100,
max_dec_cells=200, return_num_ra_cells=False, in-
put_in_degrees=True)

A method to optimally partition spherical regions such that pairs of points within a certain angular separation,
thetamax, can be quickly computed.

Generates the binning scheme used in Corrfunc.mocks.DDtheta_mocks for a spherical region in Right
Ascension (RA), Declination (DEC) and a maximum angular separation.

For a given thetamax, regions on the sphere are divided into bands in DEC bands, with the width in DEC
equal to thetamax. If link_in_ra is set, then these DEC bands are further sub-divided into RA cells.

2.1. Comprehensive API reference 71



Corrfunc Documentation, Release 2.3.1

Parameters

• thetamax (double) – Max. angular separation of pairs. Expected to be in degrees unless
input_in_degrees is set to False.

• ra_limits (array of 2 doubles. Default [0.0, 2*pi]) – Range of Righ
Ascension (longitude) for the spherical region

• dec_limits (array of 2 doubles. Default [-pi/2, pi/2]) – Range of
Declination (latitude) values for the spherical region

• link_in_ra (Boolean. Default True) – Whether linking in RA is done (in addi-
tion to linking in DEC)

• ra_refine_factor (integer, >= 1. Default 1) – Controls the sub-division
of the RA cells. For a large number of particles, higher ra_refine_factor typically results in
a faster runtime

• dec_refine_factor (integer, >= 1. Default 1) – Controls the sub-division
of the DEC cells. For a large number of particles, higher dec_refine_factor typically results
in a faster runtime

• max_ra_cells (integer, >= 1. Default 100) – The max. number of RA cells
per DEC band.

• max_dec_cells (integer >= 1. Default 200) – The max. number of total
DEC bands

• return_num_ra_cells (bool, default False) – Flag to return the number of
RA cells per DEC band

• input_in_degrees (Boolean. Default True) – Flag to show if the input quan-
tities are in degrees. If set to False, all angle inputs will be taken to be in radians.

Returns

• sphere_grid (A numpy compound array, shape (ncells, 2)) – A numpy compound array with
fields dec_limit and ra_limit of size 2 each. These arrays contain the beginning and
end of DEC and RA regions for the cell.

• num_ra_cells (numpy array, returned if return_num_ra_cells is set) – A numpy
array containing the number of RA cells per declination band

Note: If link_in_ra=False, then there is effectively one RA bin per DEC band. The ‘ra_limit’ field will
show the range of allowed RA values.

See also:

Corrfunc.mocks.DDtheta_mocks

Example

>>> from Corrfunc.utils import gridlink_sphere
>>> import numpy as np
>>> try: # Backwards compatibility with old Numpy print formatting
... np.set_printoptions(legacy='1.13')
... except TypeError:
... pass
>>> thetamax=30

(continues on next page)

72 Chapter 2. Reference

https://docs.python.org/3/library/functions.html#bool


Corrfunc Documentation, Release 2.3.1

(continued from previous page)

>>> grid = gridlink_sphere(thetamax)
>>> print(grid) # doctest: +NORMALIZE_WHITESPACE
[([-1.57079633, -1.04719755], [ 0. , 3.14159265])
([-1.57079633, -1.04719755], [ 3.14159265, 6.28318531])
([-1.04719755, -0.52359878], [ 0. , 3.14159265])
([-1.04719755, -0.52359878], [ 3.14159265, 6.28318531])
([-0.52359878, 0. ], [ 0. , 1.25663706])
([-0.52359878, 0. ], [ 1.25663706, 2.51327412])
([-0.52359878, 0. ], [ 2.51327412, 3.76991118])
([-0.52359878, 0. ], [ 3.76991118, 5.02654825])
([-0.52359878, 0. ], [ 5.02654825, 6.28318531])
([ 0. , 0.52359878], [ 0. , 1.25663706])
([ 0. , 0.52359878], [ 1.25663706, 2.51327412])
([ 0. , 0.52359878], [ 2.51327412, 3.76991118])
([ 0. , 0.52359878], [ 3.76991118, 5.02654825])
([ 0. , 0.52359878], [ 5.02654825, 6.28318531])
([ 0.52359878, 1.04719755], [ 0. , 3.14159265])
([ 0.52359878, 1.04719755], [ 3.14159265, 6.28318531])
([ 1.04719755, 1.57079633], [ 0. , 3.14159265])
([ 1.04719755, 1.57079633], [ 3.14159265, 6.28318531])]
>>> grid = gridlink_sphere(60, dec_refine_factor=3, ra_refine_factor=2)
>>> print(grid) # doctest: +NORMALIZE_WHITESPACE
[([-1.57079633, -1.22173048], [ 0. , 1.57079633])
([-1.57079633, -1.22173048], [ 1.57079633, 3.14159265])
([-1.57079633, -1.22173048], [ 3.14159265, 4.71238898])
([-1.57079633, -1.22173048], [ 4.71238898, 6.28318531])
([-1.22173048, -0.87266463], [ 0. , 1.57079633])
([-1.22173048, -0.87266463], [ 1.57079633, 3.14159265])
([-1.22173048, -0.87266463], [ 3.14159265, 4.71238898])
([-1.22173048, -0.87266463], [ 4.71238898, 6.28318531])
([-0.87266463, -0.52359878], [ 0. , 1.57079633])
([-0.87266463, -0.52359878], [ 1.57079633, 3.14159265])
([-0.87266463, -0.52359878], [ 3.14159265, 4.71238898])
([-0.87266463, -0.52359878], [ 4.71238898, 6.28318531])
([-0.52359878, -0.17453293], [ 0. , 1.57079633])
([-0.52359878, -0.17453293], [ 1.57079633, 3.14159265])
([-0.52359878, -0.17453293], [ 3.14159265, 4.71238898])
([-0.52359878, -0.17453293], [ 4.71238898, 6.28318531])
([-0.17453293, 0.17453293], [ 0. , 1.57079633])
([-0.17453293, 0.17453293], [ 1.57079633, 3.14159265])
([-0.17453293, 0.17453293], [ 3.14159265, 4.71238898])
([-0.17453293, 0.17453293], [ 4.71238898, 6.28318531])
([ 0.17453293, 0.52359878], [ 0. , 1.57079633])
([ 0.17453293, 0.52359878], [ 1.57079633, 3.14159265])
([ 0.17453293, 0.52359878], [ 3.14159265, 4.71238898])
([ 0.17453293, 0.52359878], [ 4.71238898, 6.28318531])
([ 0.52359878, 0.87266463], [ 0. , 1.57079633])
([ 0.52359878, 0.87266463], [ 1.57079633, 3.14159265])
([ 0.52359878, 0.87266463], [ 3.14159265, 4.71238898])
([ 0.52359878, 0.87266463], [ 4.71238898, 6.28318531])
([ 0.87266463, 1.22173048], [ 0. , 1.57079633])
([ 0.87266463, 1.22173048], [ 1.57079633, 3.14159265])
([ 0.87266463, 1.22173048], [ 3.14159265, 4.71238898])
([ 0.87266463, 1.22173048], [ 4.71238898, 6.28318531])
([ 1.22173048, 1.57079633], [ 0. , 1.57079633])
([ 1.22173048, 1.57079633], [ 1.57079633, 3.14159265])
([ 1.22173048, 1.57079633], [ 3.14159265, 4.71238898])

(continues on next page)

2.1. Comprehensive API reference 73



Corrfunc Documentation, Release 2.3.1

(continued from previous page)

([ 1.22173048, 1.57079633], [ 4.71238898, 6.28318531])]

74 Chapter 2. Reference



CHAPTER 3

License and Credits

75



Corrfunc Documentation, Release 2.3.1

76 Chapter 3. License and Credits



Python Module Index

c
Corrfunc, 33
Corrfunc.io, 64
Corrfunc.mocks, 34
Corrfunc.theory, 48
Corrfunc.utils, 67

77



Corrfunc Documentation, Release 2.3.1

78 Python Module Index



Index

C
compute_nbins() (in module Corrfunc.utils), 71
convert_3d_counts_to_cf() (in module Cor-

rfunc.utils), 67
convert_rp_pi_counts_to_wp() (in module

Corrfunc.utils), 68
Corrfunc (module), 33
Corrfunc.io (module), 64
Corrfunc.mocks (module), 34
Corrfunc.theory (module), 48
Corrfunc.utils (module), 67

D
DD() (in module Corrfunc.theory), 48
DDrppi() (in module Corrfunc.theory), 50
DDrppi_mocks() (in module Corrfunc.mocks), 34
DDsmu() (in module Corrfunc.theory), 61
DDsmu_mocks() (in module Corrfunc.mocks), 45
DDtheta_mocks() (in module Corrfunc.mocks), 38

F
fix_cz() (in module Corrfunc.utils), 70
fix_ra_dec() (in module Corrfunc.utils), 70

G
gridlink_sphere() (in module Corrfunc.utils), 71

R
read_ascii_catalog() (in module Corrfunc.io),

65
read_catalog() (in module Corrfunc.io), 66
read_fastfood_catalog() (in module Cor-

rfunc.io), 64
read_text_file() (in module Corrfunc), 33
return_file_with_rbins() (in module Cor-

rfunc.utils), 70

T
translate_isa_string_to_enum() (in module

Corrfunc.utils), 70

V
vpf() (in module Corrfunc.theory), 59
vpf_mocks() (in module Corrfunc.mocks), 41

W
which() (in module Corrfunc), 33
wp() (in module Corrfunc.theory), 54
write_text_file() (in module Corrfunc), 33

X
xi() (in module Corrfunc.theory), 56

79


	Overview of Corrfunc
	Reference
	License and Credits
	Python Module Index
	Index

